結果
問題 | No.2336 Do you like typical problems? |
ユーザー |
![]() |
提出日時 | 2023-06-02 22:20:58 |
言語 | C++17 (gcc 13.3.0 + boost 1.87.0) |
結果 |
AC
|
実行時間 | 354 ms / 2,000 ms |
コード長 | 13,183 bytes |
コンパイル時間 | 1,533 ms |
コンパイル使用メモリ | 137,016 KB |
最終ジャッジ日時 | 2025-02-13 18:49:51 |
ジャッジサーバーID (参考情報) |
judge4 / judge2 |
(要ログイン)
ファイルパターン | 結果 |
---|---|
sample | AC * 3 |
other | AC * 18 |
ソースコード
#ifndef LOCAL#define FAST_IO#endif// ============#include <algorithm>#include <array>#include <bitset>#include <cassert>#include <cmath>#include <iomanip>#include <iostream>#include <list>#include <map>#include <numeric>#include <queue>#include <random>#include <set>#include <stack>#include <string>#include <tuple>#include <unordered_map>#include <unordered_set>#include <utility>#include <vector>#define OVERRIDE(a, b, c, d, ...) d#define REP2(i, n) for (i32 i = 0; i < (i32)(n); ++i)#define REP3(i, m, n) for (i32 i = (i32)(m); i < (i32)(n); ++i)#define REP(...) OVERRIDE(__VA_ARGS__, REP3, REP2)(__VA_ARGS__)#define PER(i, n) for (i32 i = (i32)(n) - 1; i >= 0; --i)#define ALL(x) begin(x), end(x)using namespace std;using u32 = unsigned int;using u64 = unsigned long long;using i32 = signed int;using i64 = signed long long;using f64 = double;using f80 = long double;template <typename T>using Vec = vector<T>;template <typename T>bool chmin(T &x, const T &y) {if (x > y) {x = y;return true;}return false;}template <typename T>bool chmax(T &x, const T &y) {if (x < y) {x = y;return true;}return false;}#ifdef INT128using u128 = __uint128_t;using i128 = __int128_t;istream &operator>>(istream &is, i128 &x) {i64 v;is >> v;x = v;return is;}ostream &operator<<(ostream &os, i128 x) {os << (i64)x;return os;}istream &operator>>(istream &is, u128 &x) {u64 v;is >> v;x = v;return is;}ostream &operator<<(ostream &os, u128 x) {os << (u64)x;return os;}#endif[[maybe_unused]] constexpr i32 INF = 1000000100;[[maybe_unused]] constexpr i64 INF64 = 3000000000000000100;struct SetUpIO {SetUpIO() {#ifdef FAST_IOios::sync_with_stdio(false);cin.tie(nullptr);#endifcout << fixed << setprecision(15);}} set_up_io;// ============#ifdef DEBUGF#else#define DBG(x) (void)0#endif// ============#include <cassert>#include <iostream>#include <type_traits>// ============constexpr bool is_prime(unsigned n) {if (n == 0 || n == 1) {return false;}for (unsigned i = 2; i * i <= n; ++i) {if (n % i == 0) {return false;}}return true;}constexpr unsigned mod_pow(unsigned x, unsigned y, unsigned mod) {unsigned ret = 1, self = x;while (y != 0) {if (y & 1) {ret = (unsigned) ((unsigned long long) ret * self % mod);}self = (unsigned) ((unsigned long long) self * self % mod);y /= 2;}return ret;}template <unsigned mod>constexpr unsigned primitive_root() {static_assert(is_prime(mod), "`mod` must be a prime number.");if (mod == 2) {return 1;}unsigned primes[32] = {};int it = 0;{unsigned m = mod - 1;for (unsigned i = 2; i * i <= m; ++i) {if (m % i == 0) {primes[it++] = i;while (m % i == 0) {m /= i;}}}if (m != 1) {primes[it++] = m;}}for (unsigned i = 2; i < mod; ++i) {bool ok = true;for (int j = 0; j < it; ++j) {if (mod_pow(i, (mod - 1) / primes[j], mod) == 1) {ok = false;break;}}if (ok)return i;}return 0;}// y >= 1template <typename T>constexpr T safe_mod(T x, T y) {x %= y;if (x < 0) {x += y;}return x;}// y != 0template <typename T>constexpr T floor_div(T x, T y) {if (y < 0) {x *= -1;y *= -1;}if (x >= 0) {return x / y;} else {return -((-x + y - 1) / y);}}// y != 0template <typename T>constexpr T ceil_div(T x, T y) {if (y < 0) {x *= -1;y *= -1;}if (x >= 0) {return (x + y - 1) / y;} else {return -(-x / y);}}// ============template <unsigned mod>class ModInt {static_assert(mod != 0, "`mod` must not be equal to 0.");static_assert(mod < (1u << 31),"`mod` must be less than (1u << 31) = 2147483648.");unsigned val;public:static constexpr unsigned get_mod() {return mod;}constexpr ModInt() : val(0) {}template <typename T, std::enable_if_t<std::is_signed_v<T>> * = nullptr>constexpr ModInt(T x) : val((unsigned) ((long long) x % (long long) mod + (x < 0 ? mod : 0))) {}template <typename T, std::enable_if_t<std::is_unsigned_v<T>> * = nullptr>constexpr ModInt(T x) : val((unsigned) (x % mod)) {}static constexpr ModInt raw(unsigned x) {ModInt<mod> ret;ret.val = x;return ret;}constexpr unsigned get_val() const {return val;}constexpr ModInt operator+() const {return *this;}constexpr ModInt operator-() const {return ModInt<mod>(0u) - *this;}constexpr ModInt &operator+=(const ModInt &rhs) {val += rhs.val;if (val >= mod)val -= mod;return *this;}constexpr ModInt &operator-=(const ModInt &rhs) {if (val < rhs.val)val += mod;val -= rhs.val;return *this;}constexpr ModInt &operator*=(const ModInt &rhs) {val = (unsigned long long)val * rhs.val % mod;return *this;}constexpr ModInt &operator/=(const ModInt &rhs) {val = (unsigned long long)val * rhs.inv().val % mod;return *this;}friend constexpr ModInt operator+(const ModInt &lhs, const ModInt &rhs) {return ModInt<mod>(lhs) += rhs;}friend constexpr ModInt operator-(const ModInt &lhs, const ModInt &rhs) {return ModInt<mod>(lhs) -= rhs;}friend constexpr ModInt operator*(const ModInt &lhs, const ModInt &rhs) {return ModInt<mod>(lhs) *= rhs;}friend constexpr ModInt operator/(const ModInt &lhs, const ModInt &rhs) {return ModInt<mod>(lhs) /= rhs;}constexpr ModInt pow(unsigned long long x) const {ModInt<mod> ret = ModInt<mod>::raw(1);ModInt<mod> self = *this;while (x != 0) {if (x & 1)ret *= self;self *= self;x >>= 1;}return ret;}constexpr ModInt inv() const {static_assert(is_prime(mod), "`mod` must be a prime number.");assert(val != 0);return this->pow(mod - 2);}friend std::istream &operator>>(std::istream &is, ModInt<mod> &x) {long long val;is >> val;x.val = val % mod + (val < 0 ? mod : 0);return is;}friend std::ostream &operator<<(std::ostream &os, const ModInt<mod> &x) {os << x.val;return os;}friend bool operator==(const ModInt &lhs, const ModInt &rhs) {return lhs.val == rhs.val;}friend bool operator!=(const ModInt &lhs, const ModInt &rhs) {return lhs.val != rhs.val;}};[[maybe_unused]] constexpr unsigned mod998244353 = 998244353;[[maybe_unused]] constexpr unsigned mod1000000007 = 1000000007;// ============// ============// ============#include <cassert>#include <vector>// ============#include <limits>#include <utility>template <typename T>struct Add {using Value = T;static Value id() {return T(0);}static Value op(const Value &lhs, const Value &rhs) {return lhs + rhs;}static Value inv(const Value &x) {return -x;}};template <typename T>struct Mul {using Value = T;static Value id() {return Value(1);}static Value op(const Value &lhs, const Value &rhs) {return lhs * rhs;}static Value inv(const Value &x) {return Value(1) / x;}};template <typename T>struct Min {using Value = T;static Value id() {return std::numeric_limits<T>::max();}static Value op(const Value &lhs, const Value &rhs) {return std::min(lhs, rhs);}};template <typename T>struct Max {using Value = T;static Value id() {return std::numeric_limits<Value>::min();}static Value op(const Value &lhs, const Value &rhs) {return std::max(lhs, rhs);}};template <typename T>struct Xor {using Value = T;static Value id() {return T(0);}static Value op(const Value &lhs, const Value &rhs) {return lhs ^ rhs;}static Value inv(const Value &x) {return x;}};template <typename Monoid>struct Reversible {using Value = std::pair<typename Monoid::Value, typename Monoid::Value>;static Value id() {return Value(Monoid::id(), Monoid::id());}static Value op(const Value &v1, const Value &v2) {return Value(Monoid::op(v1.first, v2.first),Monoid::op(v2.second, v1.second));}};// ============template <typename CommutativeGroup>class FenwickTree {public:using Value = typename CommutativeGroup::Value;private:std::vector<Value> data;public:FenwickTree(int n) : data(n, CommutativeGroup::id()) {}void add(int idx, const Value &x) {assert(idx >= 0 && idx < (int) data.size());for (; idx < (int) data.size(); idx |= idx + 1) {data[idx] = CommutativeGroup::op(data[idx], x);}}Value sum(int r) const {assert(r >= 0 && r <= (int) data.size());Value ret = CommutativeGroup::id();for (; r > 0; r &= r - 1) {ret = CommutativeGroup::op(ret, data[r - 1]);}return ret;}Value sum(int l, int r) const {assert(l >= 0 && l <= r && r <= (int) data.size());return CommutativeGroup::op(sum(r), CommutativeGroup::inv(sum(l)));}};template <typename T>using FenwickTreeAdd = FenwickTree<Add<T>>;// ============template <typename T>class RangeAddRangeSum {int n;FenwickTree<Add<T>> ft0;FenwickTree<Add<T>> ft1;public:RangeAddRangeSum(int n) : n(n), ft0(n + 1), ft1(n + 1) {}void add(int l, int r, const T &v) {assert(0 <= l && l <= r && r <= n);ft0.add(l, v);ft0.add(r, -v);ft1.add(l, -T(l) * v);ft1.add(r, T(r) * v);}T sum(int l, int r) const {assert(0 <= l && l <= r && r <= n);return T(r) * ft0.sum(r) + ft1.sum(r) - T(l) * ft0.sum(l) - ft1.sum(l);}};// ============// ============#include <algorithm>#include <vector>template <typename T>class CoordinateCompression {std::vector<T> data;int size_sum() {return 0;}template <typename... Tail>int size_sum(const std::vector<T> &head, const Tail &...tail) {return (int) head.size() + size_sum(tail...);}void push() {}template <typename... Tail>void push(const std::vector<T> &head, const Tail &...tail) {for (const T &ele : head) {data.emplace_back(ele);}push(tail...);}void compress() {}template <typename... Tail>void compress(std::vector<T> &head, Tail &...tail) {for (T &ele : head) {ele = (T) (std::lower_bound(data.begin(), data.end(), ele) - data.begin());}compress(tail...);}public:template <typename... V>CoordinateCompression(V &...v) {data.reserve(size_sum(v...));push(v...);std::sort(data.begin(), data.end());data.erase(std::unique(data.begin(), data.end()), data.end());compress(v...);}const T &operator[](const T &ele) const {return data[ele];}int size() const {return data.size();}bool contains(const T &ele) const {auto it = std::lower_bound(data.begin(), data.end(), ele);return it != data.end() && *it == ele;}T cc(const T &ele) const {return (T) (std::lower_bound(data.begin(), data.end(), ele) - data.begin());}};// ============using Mint = ModInt<mod998244353>;int main() {i32 n;cin >> n;Vec<i32> b(n), c(n);REP(i, n) {cin >> b[i] >> c[i];--b[i];}if (n == 1) {cout << 0 << '\n';exit(0);}CoordinateCompression<i32> cc(b, c);RangeAddRangeSum<Mint> rr(cc.size());REP(i, n) {rr.add(b[i], c[i], Mint(1) / Mint(cc[c[i]] - cc[b[i]]));}REP(i, cc.size() - 1) {Mint t = rr.sum(i, i + 1);rr.add(i, i + 1, t * (Mint(cc[i + 1] - cc[i] - 1)));}Mint eq;REP(i, n) {Mint s = rr.sum(b[i], c[i]);DBG(s);s -= Mint(1);s /= Mint(cc[c[i]] - cc[b[i]]);s /= Mint(n) * Mint(n - 1);eq += s;}Mint inv = (Mint(1) - eq) / Mint(2);Mint ex = inv * Mint(n) * Mint(n - 1) / Mint(2);REP(i, 1, n + 1) {ex *= Mint(i);}cout << ex << '\n';}