結果

問題 No.2338 Range AtCoder Query
ユーザー suisensuisen
提出日時 2023-06-02 22:22:08
言語 C++17
(gcc 12.3.0 + boost 1.83.0)
結果
WA  
実行時間 -
コード長 34,137 bytes
コンパイル時間 3,793 ms
コンパイル使用メモリ 325,456 KB
実行使用メモリ 17,740 KB
最終ジャッジ日時 2023-08-28 04:10:39
合計ジャッジ時間 15,992 ms
ジャッジサーバーID
(参考情報)
judge15 / judge13
このコードへのチャレンジ
(要ログイン)

テストケース

テストケース表示
入力 結果 実行時間
実行使用メモリ
testcase_00 AC 2 ms
8,756 KB
testcase_01 AC 2 ms
4,380 KB
testcase_02 AC 2 ms
4,376 KB
testcase_03 WA -
testcase_04 AC 2 ms
4,380 KB
testcase_05 AC 2 ms
4,376 KB
testcase_06 WA -
testcase_07 WA -
testcase_08 WA -
testcase_09 WA -
testcase_10 WA -
testcase_11 TLE -
testcase_12 TLE -
testcase_13 TLE -
testcase_14 -- -
testcase_15 -- -
testcase_16 -- -
testcase_17 -- -
testcase_18 -- -
testcase_19 -- -
testcase_20 -- -
testcase_21 -- -
testcase_22 -- -
testcase_23 -- -
testcase_24 -- -
testcase_25 -- -
testcase_26 -- -
testcase_27 -- -
testcase_28 -- -
testcase_29 -- -
testcase_30 -- -
testcase_31 -- -
testcase_32 -- -
testcase_33 -- -
testcase_34 -- -
権限があれば一括ダウンロードができます

ソースコード

diff #

#include <bits/stdc++.h>

#ifdef _MSC_VER
#  include <intrin.h>
#else
#  include <x86intrin.h>
#endif

#include <limits>
#include <type_traits>

namespace suisen {
// ! utility
template <typename ...Types>
using constraints_t = std::enable_if_t<std::conjunction_v<Types...>, std::nullptr_t>;
template <bool cond_v, typename Then, typename OrElse>
constexpr decltype(auto) constexpr_if(Then&& then, OrElse&& or_else) {
    if constexpr (cond_v) {
        return std::forward<Then>(then);
    } else {
        return std::forward<OrElse>(or_else);
    }
}

// ! function
template <typename ReturnType, typename Callable, typename ...Args>
using is_same_as_invoke_result = std::is_same<std::invoke_result_t<Callable, Args...>, ReturnType>;
template <typename F, typename T>
using is_uni_op = is_same_as_invoke_result<T, F, T>;
template <typename F, typename T>
using is_bin_op = is_same_as_invoke_result<T, F, T, T>;

template <typename Comparator, typename T>
using is_comparator = std::is_same<std::invoke_result_t<Comparator, T, T>, bool>;

// ! integral
template <typename T, typename = constraints_t<std::is_integral<T>>>
constexpr int bit_num = std::numeric_limits<std::make_unsigned_t<T>>::digits;
template <typename T, unsigned int n>
struct is_nbit { static constexpr bool value = bit_num<T> == n; };
template <typename T, unsigned int n>
static constexpr bool is_nbit_v = is_nbit<T, n>::value;

// ?
template <typename T>
struct safely_multipliable {};
template <>
struct safely_multipliable<int> { using type = long long; };
template <>
struct safely_multipliable<long long> { using type = __int128_t; };
template <>
struct safely_multipliable<unsigned int> { using type = unsigned long long; };
template <>
struct safely_multipliable<unsigned long int> { using type = __uint128_t; };
template <>
struct safely_multipliable<unsigned long long> { using type = __uint128_t; };
template <>
struct safely_multipliable<float> { using type = float; };
template <>
struct safely_multipliable<double> { using type = double; };
template <>
struct safely_multipliable<long double> { using type = long double; };
template <typename T>
using safely_multipliable_t = typename safely_multipliable<T>::type;

template <typename T, typename = void>
struct rec_value_type {
    using type = T;
};
template <typename T>
struct rec_value_type<T, std::void_t<typename T::value_type>> {
    using type = typename rec_value_type<typename T::value_type>::type;
};
template <typename T>
using rec_value_type_t = typename rec_value_type<T>::type;

} // namespace suisen

// ! type aliases
using i128 = __int128_t;
using u128 = __uint128_t;

template <typename T>
using pq_greater = std::priority_queue<T, std::vector<T>, std::greater<T>>;

// ! macros (internal)
#define DETAIL_OVERLOAD2(_1,_2,name,...) name
#define DETAIL_OVERLOAD3(_1,_2,_3,name,...) name
#define DETAIL_OVERLOAD4(_1,_2,_3,_4,name,...) name

#define DETAIL_REP4(i,l,r,s)  for(std::remove_reference_t<std::remove_const_t<decltype(r)>>i=(l);i<(r);i+=(s))
#define DETAIL_REP3(i,l,r)    DETAIL_REP4(i,l,r,1)
#define DETAIL_REP2(i,n)      DETAIL_REP3(i,0,n)
#define DETAIL_REPINF3(i,l,s) for(std::remove_reference_t<std::remove_const_t<decltype(l)>>i=(l);;i+=(s))
#define DETAIL_REPINF2(i,l)   DETAIL_REPINF3(i,l,1)
#define DETAIL_REPINF1(i)     DETAIL_REPINF2(i,0)
#define DETAIL_RREP4(i,l,r,s) for(std::remove_reference_t<std::remove_const_t<decltype(r)>>i=(l)+fld((r)-(l)-1,s)*(s);i>=(l);i-=(s))
#define DETAIL_RREP3(i,l,r)   DETAIL_RREP4(i,l,r,1)
#define DETAIL_RREP2(i,n)     DETAIL_RREP3(i,0,n)

#define DETAIL_CAT_I(a, b) a##b
#define DETAIL_CAT(a, b) DETAIL_CAT_I(a, b)
#define DETAIL_UNIQVAR(tag) DETAIL_CAT(tag, __LINE__)

// ! macros
#define REP(...)    DETAIL_OVERLOAD4(__VA_ARGS__, DETAIL_REP4   , DETAIL_REP3   , DETAIL_REP2   )(__VA_ARGS__)
#define RREP(...)   DETAIL_OVERLOAD4(__VA_ARGS__, DETAIL_RREP4  , DETAIL_RREP3  , DETAIL_RREP2  )(__VA_ARGS__)
#define REPINF(...) DETAIL_OVERLOAD3(__VA_ARGS__, DETAIL_REPINF3, DETAIL_REPINF2, DETAIL_REPINF1)(__VA_ARGS__)

#define LOOP(n) for (std::remove_reference_t<std::remove_const_t<decltype(n)>> DETAIL_UNIQVAR(loop_variable) = n; DETAIL_UNIQVAR(loop_variable) --> 0;)

#define ALL(iterable) std::begin(iterable), std::end(iterable)
#define INPUT(type, ...) type __VA_ARGS__; read(__VA_ARGS__)

// ! debug

#ifdef LOCAL
#  define debug(...) debug_internal(#__VA_ARGS__, __VA_ARGS__)

template <class T, class... Args>
void debug_internal(const char* s, T&& first, Args&&... args) {
    constexpr const char* prefix = "[\033[32mDEBUG\033[m] ";
    constexpr const char* open_brakets = sizeof...(args) == 0 ? "" : "(";
    constexpr const char* close_brakets = sizeof...(args) == 0 ? "" : ")";
    std::cerr << prefix << open_brakets << s << close_brakets << ": " << open_brakets << std::forward<T>(first);
    ((std::cerr << ", " << std::forward<Args>(args)), ...);
    std::cerr << close_brakets << "\n";
}

#else
#  define debug(...) void(0)
#endif

// ! I/O utilities

// __int128_t
std::ostream& operator<<(std::ostream& dest, __int128_t value) {
    std::ostream::sentry s(dest);
    if (s) {
        __uint128_t tmp = value < 0 ? -value : value;
        char buffer[128];
        char* d = std::end(buffer);
        do {
            --d;
            *d = "0123456789"[tmp % 10];
            tmp /= 10;
        } while (tmp != 0);
        if (value < 0) {
            --d;
            *d = '-';
        }
        int len = std::end(buffer) - d;
        if (dest.rdbuf()->sputn(d, len) != len) {
            dest.setstate(std::ios_base::badbit);
        }
    }
    return dest;
}
// __uint128_t
std::ostream& operator<<(std::ostream& dest, __uint128_t value) {
    std::ostream::sentry s(dest);
    if (s) {
        char buffer[128];
        char* d = std::end(buffer);
        do {
            --d;
            *d = "0123456789"[value % 10];
            value /= 10;
        } while (value != 0);
        int len = std::end(buffer) - d;
        if (dest.rdbuf()->sputn(d, len) != len) {
            dest.setstate(std::ios_base::badbit);
        }
    }
    return dest;
}

// pair
template <typename T, typename U>
std::ostream& operator<<(std::ostream& out, const std::pair<T, U>& a) {
    return out << a.first << ' ' << a.second;
}
// tuple
template <unsigned int N = 0, typename ...Args>
std::ostream& operator<<(std::ostream& out, const std::tuple<Args...>& a) {
    if constexpr (N >= std::tuple_size_v<std::tuple<Args...>>) return out;
    else {
        out << std::get<N>(a);
        if constexpr (N + 1 < std::tuple_size_v<std::tuple<Args...>>) out << ' ';
        return operator<<<N + 1>(out, a);
    }
}
// vector
template <typename T>
std::ostream& operator<<(std::ostream& out, const std::vector<T>& a) {
    for (auto it = a.begin(); it != a.end();) {
        out << *it;
        if (++it != a.end()) out << ' ';
    }
    return out;
}
// array
template <typename T, size_t N>
std::ostream& operator<<(std::ostream& out, const std::array<T, N>& a) {
    for (auto it = a.begin(); it != a.end();) {
        out << *it;
        if (++it != a.end()) out << ' ';
    }
    return out;
}
inline void print() { std::cout << '\n'; }
template <typename Head, typename... Tail>
inline void print(const Head& head, const Tail &...tails) {
    std::cout << head;
    if (sizeof...(tails)) std::cout << ' ';
    print(tails...);
}
template <typename Iterable>
auto print_all(const Iterable& v, std::string sep = " ", std::string end = "\n") -> decltype(std::cout << *v.begin(), void()) {
    for (auto it = v.begin(); it != v.end();) {
        std::cout << *it;
        if (++it != v.end()) std::cout << sep;
    }
    std::cout << end;
}

__int128_t stoi128(const std::string& s) {
    __int128_t ret = 0;
    for (int i = 0; i < int(s.size()); i++) if ('0' <= s[i] and s[i] <= '9') ret = 10 * ret + s[i] - '0';
    if (s[0] == '-') ret = -ret;
    return ret;
}
__uint128_t stou128(const std::string& s) {
    __uint128_t ret = 0;
    for (int i = 0; i < int(s.size()); i++) if ('0' <= s[i] and s[i] <= '9') ret = 10 * ret + s[i] - '0';
    return ret;
}
// __int128_t
std::istream& operator>>(std::istream& in, __int128_t& v) {
    std::string s;
    in >> s;
    v = stoi128(s);
    return in;
}
// __uint128_t
std::istream& operator>>(std::istream& in, __uint128_t& v) {
    std::string s;
    in >> s;
    v = stou128(s);
    return in;
}
// pair
template <typename T, typename U>
std::istream& operator>>(std::istream& in, std::pair<T, U>& a) {
    return in >> a.first >> a.second;
}
// tuple
template <unsigned int N = 0, typename ...Args>
std::istream& operator>>(std::istream& in, std::tuple<Args...>& a) {
    if constexpr (N >= std::tuple_size_v<std::tuple<Args...>>) return in;
    else return operator>><N + 1>(in >> std::get<N>(a), a);
}
// vector
template <typename T>
std::istream& operator>>(std::istream& in, std::vector<T>& a) {
    for (auto it = a.begin(); it != a.end(); ++it) in >> *it;
    return in;
}
// array
template <typename T, size_t N>
std::istream& operator>>(std::istream& in, std::array<T, N>& a) {
    for (auto it = a.begin(); it != a.end(); ++it) in >> *it;
    return in;
}
template <typename ...Args>
void read(Args &...args) {
    (std::cin >> ... >> args);
}

// ! integral utilities

// Returns pow(-1, n)
template <typename T> constexpr inline int pow_m1(T n) {
    return -(n & 1) | 1;
}
// Returns pow(-1, n)
template <> constexpr inline int pow_m1<bool>(bool n) {
    return -int(n) | 1;
}

// Returns floor(x / y)
template <typename T> constexpr inline T fld(const T x, const T y) {
    return (x ^ y) >= 0 ? x / y : (x - (y + pow_m1(y >= 0))) / y;
}
template <typename T> constexpr inline T cld(const T x, const T y) {
    return (x ^ y) <= 0 ? x / y : (x + (y + pow_m1(y >= 0))) / y;
}

template <typename T, std::enable_if_t<std::negation_v<suisen::is_nbit<T, 64>>, std::nullptr_t> = nullptr>
__attribute__((target("popcnt"))) constexpr inline int popcount(const T x) { return _mm_popcnt_u32(x); }
template <typename T, std::enable_if_t<suisen::is_nbit_v<T, 64>, std::nullptr_t> = nullptr>
__attribute__((target("popcnt"))) constexpr inline int popcount(const T x) { return _mm_popcnt_u64(x); }
template <typename T, std::enable_if_t<std::negation_v<suisen::is_nbit<T, 64>>, std::nullptr_t> = nullptr>
constexpr inline int count_lz(const T x) { return x ? __builtin_clz(x) : suisen::bit_num<T>; }
template <typename T, std::enable_if_t<suisen::is_nbit_v<T, 64>, std::nullptr_t> = nullptr>
constexpr inline int count_lz(const T x) { return x ? __builtin_clzll(x) : suisen::bit_num<T>; }
template <typename T, std::enable_if_t<std::negation_v<suisen::is_nbit<T, 64>>, std::nullptr_t> = nullptr>
constexpr inline int count_tz(const T x) { return x ? __builtin_ctz(x) : suisen::bit_num<T>; }
template <typename T, std::enable_if_t<suisen::is_nbit_v<T, 64>, std::nullptr_t> = nullptr>
constexpr inline int count_tz(const T x) { return x ? __builtin_ctzll(x) : suisen::bit_num<T>; }
template <typename T> constexpr inline int floor_log2(const T x) { return suisen::bit_num<T> - 1 - count_lz(x); }
template <typename T> constexpr inline int ceil_log2(const T x) { return floor_log2(x) + ((x & -x) != x); }
template <typename T> constexpr inline int kth_bit(const T x, const unsigned int k) { return (x >> k) & 1; }
template <typename T> constexpr inline int parity(const T x) { return popcount(x) & 1; }

// ! container

template <typename T, typename Comparator>
auto priqueue_comp(const Comparator comparator) {
    return std::priority_queue<T, std::vector<T>, Comparator>(comparator);
}

template <typename Container>
void sort_unique_erase(Container& a) {
    std::sort(a.begin(), a.end());
    a.erase(std::unique(a.begin(), a.end()), a.end());
}

template <typename InputIterator, typename BiConsumer>
auto foreach_adjacent_values(InputIterator first, InputIterator last, BiConsumer f) -> decltype(f(*first++, *last), void()) {
    if (first != last) for (auto itr = first, itl = itr++; itr != last; itl = itr++) f(*itl, *itr);
}
template <typename Container, typename BiConsumer>
auto foreach_adjacent_values(Container &&c, BiConsumer f) -> decltype(c.begin(), c.end(), void()) {
    foreach_adjacent_values(c.begin(), c.end(), f);
}

// ! other utilities

// x <- min(x, y). returns true iff `x` has chenged.
template <typename T>
inline bool chmin(T& x, const T& y) {
    return y >= x ? false : (x = y, true);
}
// x <- max(x, y). returns true iff `x` has chenged.
template <typename T>
inline bool chmax(T& x, const T& y) {
    return y <= x ? false : (x = y, true);
}

template <typename T, std::enable_if_t<std::is_integral_v<T>, std::nullptr_t> = nullptr>
std::string bin(T val, int bit_num = -1) {
    std::string res;
    if (bit_num != -1) {
        for (int bit = bit_num; bit-- > 0;) res += '0' + ((val >> bit) & 1);
    } else {
        for (; val; val >>= 1) res += '0' + (val & 1);
        std::reverse(res.begin(), res.end());
    }
    return res;
}

template <typename T, std::enable_if_t<std::is_integral_v<T>, std::nullptr_t> = nullptr>
std::vector<T> digits_low_to_high(T val, T base = 10) {
    std::vector<T> res;
    for (; val; val /= base) res.push_back(val % base);
    if (res.empty()) res.push_back(T{ 0 });
    return res;
}
template <typename T, std::enable_if_t<std::is_integral_v<T>, std::nullptr_t> = nullptr>
std::vector<T> digits_high_to_low(T val, T base = 10) {
    auto res = digits_low_to_high(val, base);
    std::reverse(res.begin(), res.end());
    return res;
}

template <typename T>
std::string join(const std::vector<T>& v, const std::string& sep, const std::string& end) {
    std::ostringstream ss;
    for (auto it = v.begin(); it != v.end();) {
        ss << *it;
        if (++it != v.end()) ss << sep;
    }
    ss << end;
    return ss.str();
}

template <typename Func, typename Seq>
auto transform_to_vector(const Func &f, const Seq &s) {
    std::vector<std::invoke_result_t<Func, typename Seq::value_type>> v;
    v.reserve(std::size(s)), std::transform(std::begin(s), std::end(s), std::back_inserter(v), f);
    return v;
}
template <typename T, typename Seq>
auto copy_to_vector(const Seq &s) {
    std::vector<T> v;
    v.reserve(std::size(s)), std::copy(std::begin(s), std::end(s), std::back_inserter(v));
    return v;
}
template <typename Seq>
Seq concat(Seq s, const Seq &t) {
    s.reserve(std::size(s) + std::size(t));
    std::copy(std::begin(t), std::end(t), std::back_inserter(s));
    return s;
}
template <typename Seq>
std::vector<Seq> split(const Seq s, typename Seq::value_type delim) {
    std::vector<Seq> res;
    for (auto itl = std::begin(s), itr = itl;; itl = ++itr) {
        while (itr != std::end(s) and *itr != delim) ++itr;
        res.emplace_back(itl, itr);
        if (itr == std::end(s)) return res;
    }
}

int digit_to_int(char c) { return c - '0'; }
int lowercase_to_int(char c) { return c - 'a'; }
int uppercase_to_int(char c) { return c - 'A'; }

std::vector<int> digit_str_to_ints(const std::string &s) {
    return transform_to_vector(digit_to_int, s);
}
std::vector<int> lowercase_str_to_ints(const std::string &s) {
    return transform_to_vector(lowercase_to_int, s);
}
std::vector<int> uppercase_str_to_ints(const std::string &s) {
    return transform_to_vector(uppercase_to_int, s);
}

const std::string Yes = "Yes", No = "No", YES = "YES", NO = "NO";

namespace suisen {}
using namespace suisen;
using namespace std;

struct io_setup {
    io_setup(int precision = 20) {
        std::ios::sync_with_stdio(false);
        std::cin.tie(nullptr);
        std::cout << std::fixed << std::setprecision(precision);
    }
} io_setup_ {};

// ! code from here

#include <algorithm>
#include <cmath>
#include <numeric>
#include <vector>

namespace suisen {
    struct Mo {
        Mo() {}
        Mo(const int n, const std::vector<std::pair<int, int>> &queries) : n(n), q(queries.size()), b(bucket_size(n, q)), qs(queries), ord(q) {
            std::iota(ord.begin(), ord.end(), 0);
            std::sort(
                ord.begin(), ord.end(),
                [&, this](int i, int j) {
                    const auto &[li, ri] = qs[i];
                    const auto &[lj, rj] = qs[j];
                    const int bi = li / b, bj = lj / b;
                    if (bi != bj) return bi < bj;
                    if (ri != rj) return bi & 1 ? ri > rj : ri < rj;
                    return li < lj;
                }
            );
        }

        // getter methods used in updating functions: AddL, DelL, etc.
        auto get_left()  const { return l; }
        auto get_right() const { return r; }
        auto get_range() const { return std::make_pair(l, r); }
        auto get_query_id() const { return query_id; }

        /**
         * [Parameters]
         * Eval : () -> T : return the current answer
         * AddL : int -> any (discarded) : add    `l` to   the current range [l + 1, r)
         * DelL : int -> any (discarded) : delete `l` from the current range [l, r)
         * AddR : int -> any (discarded) : add    `r` to   the current range [l, r)
         * DelR : int -> any (discarded) : delete `r` from the current range [l, r + 1)
         * 
         * [Note]
         * starting from the range [0, 0).
         */
        template <typename Eval, typename AddL, typename DelL, typename AddR, typename DelR>
        auto solve(Eval eval, AddL add_l, DelL del_l, AddR add_r, DelR del_r) {
            l = 0, r = 0;
            std::vector<decltype(eval())> res(q);
            for (int qi : ord) {
                const auto &[nl, nr] = qs[query_id = qi];
                while (r < nr) add_r(r), ++r;
                while (l > nl) --l, add_l(l);
                while (r > nr) --r, del_r(r);
                while (l < nl) del_l(l), ++l;
                res[qi] = eval();
            }
            return res;
        }
    
        /**
         * [Parameters]
         * Eval : () -> T : return the current answer
         * Add : int -> any (discarded) : add    `i` to   the current range [i + 1, r) or [l, i)
         * Del : int -> any (discarded) : delete `i` from the current range [i, r) or [l, i + 1)
         * 
         * [Note]
         * starting from the range [0, 0).
         */
        template <typename Eval, typename Add, typename Del>
        auto solve(Eval eval, Add add, Del del) {
            return solve(eval, add, del, add, del);
        }

    private:
        int n, q, b;
        int query_id = -1;
        std::vector<std::pair<int, int>> qs;
        std::vector<int> ord;
        int l = 0, r = 0;

        static int bucket_size(int n, int q) {
            return std::max(1, int(::sqrt(3) * n / ::sqrt(std::max(1, 2 * q))));
        }
    };
} // namespace suisen

#include <cassert>
#include <array>

#include <cstdint>

namespace suisen {
    struct BitVector {
        explicit BitVector(int n) : n(n), nl((n >> LOG_BLOCK_L) + 1), ns((n >> LOG_BLOCK_S) + 1), cum_l(nl, 0), cum_s(ns, 0), bits(ns, 0) {}
        BitVector() : BitVector(0) {}
        template <typename Gen, constraints_t<is_same_as_invoke_result<bool, Gen, int>> = nullptr>
        BitVector(int n, Gen gen) : BitVector(n) {
            build(gen);
        }
        BitVector& operator=(const BitVector& bv) {
            n = bv.n, nl = bv.nl, ns = bv.ns, cum_l = bv.cum_l, cum_s = bv.cum_s, bits = bv.bits;
            return *this;
        }
        BitVector& operator=(BitVector&& bv) {
            n = bv.n, nl = bv.nl, ns = bv.ns, cum_l = std::move(bv.cum_l), cum_s = std::move(bv.cum_s), bits = std::move(bv.bits);
            return *this;
        }
        template <typename Gen, constraints_t<is_same_as_invoke_result<bool, Gen, int>> = nullptr>
        void build(Gen gen) {
            int i = 0;
            for (int index_s = 1; index_s < ns; ++index_s) {
                int count = cum_s[index_s - 1];
                for (; i < index_s << LOG_BLOCK_S; ++i) {
                    bool b = gen(i);
                    bits[index_s - 1] |= b << (i & MASK_S);
                    count += b;
                }
                if (index_s & ((1 << (LOG_BLOCK_L - LOG_BLOCK_S)) - 1)) {
                    cum_s[index_s] = count;
                } else {
                    int index_l = i >> LOG_BLOCK_L;
                    cum_l[index_l] = cum_l[index_l - 1] + count;
                }
            }
            for (; i < n; ++i) bits[ns - 1] |= gen(i) << (i & MASK_S);
        }
        bool operator[](int i) const {
            return (bits[i >> LOG_BLOCK_S] >> (i & MASK_S)) & 1;
        }
        // returns the i'th val (i: 0-indexed)
        bool access(int i) const {
            return (*this)[i];
        }
        // returns the number of val in [0, i)
        int rank(bool val, int i) const {
            int res_1 = cum_l[i >> LOG_BLOCK_L] + cum_s[i >> LOG_BLOCK_S] + popcount8(bits[i >> LOG_BLOCK_S] & ((1 << (i & MASK_S)) - 1));
            return val ? res_1 : i - res_1;
        }
        // returns the number of val in [l, r)
        int rank(bool val, int l, int r) const {
            return rank(val, r) - rank(val, l);
        }
        // find the index of num'th val. (num: 1-indexed). if not exists, returns default_value.
        int select(bool val, int num, int default_value = -1) const {
            int l = -1, r = n + 1;
            while (r - l > 1) {
                int m = (l + r) >> 1;
                (rank(val, m) >= num ? r : l) = m;
            }
            return r == n + 1 ? default_value : r;
        }
    private:
        static constexpr int LOG_BLOCK_L = 8;
        static constexpr int LOG_BLOCK_S = 3;
        static constexpr int MASK_S = (1 << LOG_BLOCK_S) - 1;

        int n, nl, ns;
        std::vector<int> cum_l;
        std::vector<std::uint8_t> cum_s, bits;

        static constexpr std::uint8_t popcount8(std::uint8_t x) {
            x = (x & 0b01010101) + ((x >> 1) & 0b01010101);
            x = (x & 0b00110011) + ((x >> 2) & 0b00110011);
            return (x & 0b00001111) + (x >> 4);
        }
    };
} // namespace suisen

namespace suisen {
    template <typename T, int bit_num = std::numeric_limits<std::make_unsigned_t<T>>::digits>
    struct WaveletMatrix {
        // default constructor
        WaveletMatrix() noexcept : n(0) {}
        // builds WaveletMatrix from generating function typed as (int) -> T
        template <typename Gen, constraints_t<is_same_as_invoke_result<T, Gen, int>> = nullptr>
        WaveletMatrix(int n, Gen generator) : n(n) {
            build(generator);
        }
        // builds WaveletMatrix from vector
        template <typename U, constraints_t<std::is_constructible<T, U>> = nullptr>
        WaveletMatrix(const std::vector<U>& a) : WaveletMatrix(a.size(), [&a](int i) { return T(a[i]); }) {}

        // builds WaveletMatrix from generating function typed as (int) -> T
        template <typename Gen, constraints_t<is_same_as_invoke_result<T, Gen, int>> = nullptr>
        void build(Gen generator) {
            std::vector<T> a(n), l(n), r(n);
            for (int i = 0; i < n; ++i) a[i] = generator(i);
            for (int log = bit_num - 1; log >= 0; --log) {
                bv[log] = BitVector(n, [&a, log](int i) -> bool { return (a[i] >> log) & 1; });
                int li = 0, ri = 0;
                for (int i = 0; i < n; ++i) {
                    ((a[i] >> log) & 1 ? r[ri++] : l[li++]) = a[i];
                }
                a.swap(l);
                std::copy(r.begin(), r.begin() + ri, a.begin() + li);
                mid[log] = li;
            }
        }

        // returns WaveletMatrix[i]
        T operator[](int i) const {
            T res = 0;
            for (int log = bit_num - 1; log >= 0; --log) {
                bool b = bv[log][i];
                res |= T(b) << log;
                i = b * mid[log] + bv[log].rank(b, i);
            }
            return res;
        }
        // returns WaveletMatrix[i]
        T access(int i) const {
            return (*this)[i];
        }

        // returns the number of `val` in WaveletMatrix[0, i).
        int rank(T val, int i) const {
            check_value_bounds(val);
            int l = 0, r = i;
            for (int log = bit_num - 1; log >= 0; --log) succ(l, r, (val >> log) & 1, log);
            return r - l;
        }

        // returns the k'th smallest value in the multiset {| x ^ WaveletMatrix[i] : i in [l, r) |} (k : 0-indexed)
        T range_xor_kth_smallest(int l, int r, int k, T x, T default_value = T(-1)) const {
            if (k < 0 or k >= r - l) return default_value;
            T res = 0;
            check_value_bounds(x);
            for (int log = bit_num - 1; log >= 0; --log) {
                bool z = (x >> log) & 1;
                int cnt_z = bv[log].rank(z, l, r);
                bool skip_z = k >= cnt_z, bit = z ^ skip_z;
                succ(l, r, bit, log);
                res |= T(bit) << log;
                k -= skip_z * cnt_z;
            }
            return res;
        }
        // returns the k'th largest value in the multiset {| x ^ WaveletMatrix[i] : i in [l, r) |} (k : 0-indexed)
        T range_xor_kth_largest(int l, int r, int k, T x, T default_value = T(-1)) const {
            return range_xor_kth_smallest(l, r, r - l - 1 - k, x, default_value);
        }
        // returns the minimum value in the set { x ^ WaveletMatrix[i] : i in [l, r) }
        T range_xor_min(int l, int r, T x) const {
            assert(l < r);
            return range_xor_kth_smallest(l, r, 0, x);
        }
        // returns the maximum value in the set { x ^ WaveletMatrix[i] : i in [l, r) }
        T range_xor_max(int l, int r, T x) const {
            assert(l < r);
            return range_xor_kth_largest(l, r, 0, x);
        }

        // returns the number of v in WaveletMatrix[l, r) s.t. v ^ x < upper
        int range_xor_freq(int l, int r, T x, T upper) const {
            if (r <= l) return 0;
            if (upper > MAX) return r - l;
            check_value_bounds(x);
            int res = 0;
            for (int log = bit_num - 1; log >= 0; --log) {
                bool z = (x >> log) & 1, u = (upper >> log) & 1;
                if (u) res += bv[log].rank(z, l, r);
                succ(l, r, z ^ u, log);
            }
            return res;
        }
        // returns the number of v in WaveletMatrix[l, r) s.t. lower <= x ^ v < upper
        int range_xor_freq(int l, int r, T x, T lower, T upper) const {
            if (lower >= upper) return 0;
            return range_xor_freq(l, r, x, upper) - range_xor_freq(l, r, x, lower);
        }

        // returns the minimum value v in WaveletMatrix[l, r) s.t. lower <= x ^ v
        T range_xor_min_geq(int l, int r, T x, T lower, T default_value = T(-1)) const {
            int cnt = range_xor_freq(l, r, x, lower);
            return cnt >= r - l ? default_value : range_xor_kth_smallest(l, r, cnt, x);
        }
        // returns the minimum value v in WaveletMatrix[l, r) s.t. lower < x ^ v
        T range_xor_min_gt(int l, int r, T x, T lower, T default_value = T(-1)) const {
            return lower == MAX ? default_value : range_xor_min_geq(l, r, x, lower + 1, default_value);
        }
        // returns the maximum value v in WaveletMatrix[l, r) s.t. x ^ v < upper
        T range_xor_max_lt(int l, int r, T x, T upper, T default_value = T(-1)) const {
            int cnt = range_xor_freq(l, r, x, upper);
            return cnt == 0 ? default_value : range_xor_kth_smallest(l, r, cnt - 1, x, default_value);
        }
        // returns the maximum value v in WaveletMatrix[l, r) s.t. x ^ v <= upper
        T range_xor_max_leq(int l, int r, T x, T upper, T default_value = T(-1)) const {
            if (l >= r) return default_value;
            return upper == MAX ? range_xor_max(l, r, x) : range_xor_max_lt(l, r, x, upper + 1, default_value);
        }

        // returns the k'th smallest value in WaveletMatrix[l, r) (k : 0-indexed)
        T range_kth_smallest(int l, int r, int k, T default_value = T(-1)) const { return range_xor_kth_smallest(l, r, k, 0, default_value); }
        // returns the k'th largest value in WaveletMatrix[l, r) (k : 0-indexed)
        T range_kth_largest(int l, int r, int k, T default_value = T(-1)) const { return range_xor_kth_largest(l, r, k, 0, default_value); }
        // returns the minimum value in WaveletMatrix[l, r)
        T range_min(int l, int r) const { return range_xor_min(l, r, 0); }
        // returns the maximum value in WaveletMatrix[l, r)
        T range_max(int l, int r) const { return range_xor_max(l, r, 0); }

        // returns the number of v in WaveletMatrix[l, r) s.t. v < upper
        int range_freq(int l, int r, T upper) const { return range_xor_freq(l, r, 0, upper); }
        // returns the number of v in WaveletMatrix[l, r) s.t. lower <= v < upper
        int range_freq(int l, int r, T lower, T upper) const { return range_xor_freq(l, r, 0, lower, upper); }
        // returns the minimum value v in WaveletMatrix[l, r) s.t. lower <= v
        T range_min_geq(int l, int r, T lower, T default_value = T(-1)) const { return range_xor_min_geq(l, r, 0, lower, default_value); }
        // returns the minimum value v in WaveletMatrix[l, r) s.t. lower < v
        T range_min_gt(int l, int r, T lower, T default_value = T(-1)) const { return range_xor_min_gt(l, r, 0, lower, default_value); }
        // returns the maximum value v in WaveletMatrix[l, r) s.t. v < upper
        T range_max_lt(int l, int r, T upper, T default_value = T(-1)) const { return range_xor_max_lt(l, r, 0, upper, default_value); }
        // returns the maximum value v in WaveletMatrix[l, r) s.t. v <= upper
        T range_max_leq(int l, int r, T upper, T default_value = T(-1)) const { return range_xor_max_leq(l, r, 0, upper, default_value); }
    protected:
        WaveletMatrix(int n) noexcept : n(n) {}
    private:
        static_assert(bit_num > 0);
        static constexpr T MAX = bit_num == std::numeric_limits<T>::digits ? std::numeric_limits<T>::max() : (T(1) << bit_num) - 1;

        int n;
        std::array<BitVector, bit_num> bv;
        std::array<int, bit_num> mid;

        void succ(int& l, int& r, const bool b, const int log) const {
            l = b * mid[log] + bv[log].rank(b, l);
            r = b * mid[log] + bv[log].rank(b, r);
        }

        static void check_value_bounds(T val) {
            assert((val >> bit_num) == 0);
        }
    };
} // namespace suisen

int main() {
    int n, m, q;
    read(n, m, q);

    vector<pair<int, bool>> ps(n);
    for (auto& [p, v] : ps) {
        read(p);
        --p;
        string s;
        read(s);
        v = s == "AC";
    }

    vector<int> d(n);
    REP(i, n) d[i] = ps[i].first;
    WaveletMatrix<int, 18> wm(d);

    vector<int> prv(n), nxt(n);
    vector<int> prv_cnt(n), nxt_cnt(n);
    {
        vector<int> pos(m, n), cnt(m, 0);
        RREP(i, n) {
            nxt[i] = pos[ps[i].first];
            nxt_cnt[i] = cnt[ps[i].first];
            if (ps[i].second) {
                pos[ps[i].first] = i;
                cnt[ps[i].first] = 0;
            } else {
                ++cnt[ps[i].first];
            }
        }
    }
    {
        vector<int> pos(m, -1), cnt(m, 0);
        REP(i, n) {
            prv[i] = pos[ps[i].first];
            prv_cnt[i] = cnt[ps[i].first];
            if (ps[i].second) {
                pos[ps[i].first] = i;
                cnt[ps[i].first] = 0;
            } else {
                ++cnt[ps[i].first];
            }
        }
    }

    vector<pair<int, int>> qs(q);
    for (auto &[l, r] : qs) {
        read(l, r);
        --l;
    }

    Mo mo(n, qs);

    vector<int> first(m, -1);

    int ac = 0, wa = 0;

    auto ans = mo.solve(
        [&]{
            return pair { ac, wa };
        },
        [&](int l) {
            auto [p, v] = ps[l];

            if (v) {
                if (first[p] == -1) {
                    ++ac;
                    first[p] = l;
                } else {
                    wa -= prv_cnt[first[p]];
                    first[p] = l;
                }
            } else {
                if (first[p] == -1) {
                    // pass
                } else {
                    ++wa;
                }
            }
        },
        [&](int l) {
            auto [p, v] = ps[l];

            if (v) {
                if (first[p] == -1) {
                    assert(false);
                } else {
                    int pos = nxt[l];
                    if (pos < mo.get_right()) {
                        wa += nxt_cnt[l];
                    } else {
                        --ac;
                        first[p] = -1;
                    }
                }
            } else {
                if (first[p] == -1) {
                    // pass
                } else {
                    --wa;
                }
            }
        },
        [&](int r) {
            auto [p, v] = ps[r];

            if (v) {
                if (first[p] == -1) {
                    ++ac;
                    int l = mo.get_left();
                    wa += wm.rank(p, r) - wm.rank(p, l);
                    // REP(i, l, r) if (ps[i].first == p) {
                    //     ++wa;
                    // }
                    first[p] = r;
                } else {
                    // pass
                }
            } else {
                // pass
            }
        },
        [&](int r) {
            auto [p, v] = ps[r];

            if (v) {
                if (first[p] == -1) {
                    assert(false);
                } else {
                    if (first[p] < r) {
                        // pass
                    } else {
                        --ac;
                        int l = mo.get_left();
                        wa -= wm.rank(p, r) - wm.rank(p, l);
                        // REP(i, l, r) if (ps[i].first == p) {
                        //     --wa;
                        // }
                        first[p] = -1;
                    }
                }
            } else {
                // pass
            }
        }
    );

    print_all(ans, "\n");

    return 0;
}

0