結果
問題 | No.2337 Equidistant |
ユーザー | iiljj |
提出日時 | 2023-06-02 22:31:49 |
言語 | C++17 (gcc 12.3.0 + boost 1.83.0) |
結果 |
AC
|
実行時間 | 1,118 ms / 4,000 ms |
コード長 | 18,038 bytes |
コンパイル時間 | 2,065 ms |
コンパイル使用メモリ | 157,828 KB |
実行使用メモリ | 67,576 KB |
最終ジャッジ日時 | 2024-06-09 00:02:54 |
合計ジャッジ時間 | 14,059 ms |
ジャッジサーバーID (参考情報) |
judge2 / judge5 |
(要ログイン)
テストケース
テストケース表示入力 | 結果 | 実行時間 実行使用メモリ |
---|---|---|
testcase_00 | AC | 2 ms
5,248 KB |
testcase_01 | AC | 2 ms
5,376 KB |
testcase_02 | AC | 2 ms
5,376 KB |
testcase_03 | AC | 2 ms
5,376 KB |
testcase_04 | AC | 2 ms
5,376 KB |
testcase_05 | AC | 2 ms
5,376 KB |
testcase_06 | AC | 4 ms
5,376 KB |
testcase_07 | AC | 4 ms
5,376 KB |
testcase_08 | AC | 4 ms
5,376 KB |
testcase_09 | AC | 4 ms
5,376 KB |
testcase_10 | AC | 4 ms
5,376 KB |
testcase_11 | AC | 443 ms
48,748 KB |
testcase_12 | AC | 461 ms
48,756 KB |
testcase_13 | AC | 454 ms
48,876 KB |
testcase_14 | AC | 489 ms
48,876 KB |
testcase_15 | AC | 472 ms
48,880 KB |
testcase_16 | AC | 448 ms
48,876 KB |
testcase_17 | AC | 451 ms
48,716 KB |
testcase_18 | AC | 468 ms
48,876 KB |
testcase_19 | AC | 438 ms
48,876 KB |
testcase_20 | AC | 489 ms
48,748 KB |
testcase_21 | AC | 645 ms
67,576 KB |
testcase_22 | AC | 348 ms
47,944 KB |
testcase_23 | AC | 370 ms
49,236 KB |
testcase_24 | AC | 923 ms
61,432 KB |
testcase_25 | AC | 404 ms
49,228 KB |
testcase_26 | AC | 1,118 ms
61,428 KB |
testcase_27 | AC | 444 ms
49,364 KB |
testcase_28 | AC | 440 ms
49,264 KB |
ソースコード
/* #region Head */ // #include <bits/stdc++.h> #include <algorithm> #include <array> #include <bitset> #include <cassert> // assert.h #include <cmath> // math.h #include <cstring> #include <ctime> #include <deque> #include <fstream> #include <functional> #include <iomanip> #include <iostream> #include <list> #include <map> #include <memory> #include <numeric> #include <queue> #include <random> #include <set> #include <sstream> #include <stack> #include <string> #include <unordered_map> #include <unordered_set> #include <vector> using namespace std; using ll = long long; using ull = unsigned long long; using ld = long double; using pll = pair<ll, ll>; template <class T> using vc = vector<T>; template <class T> using vvc = vc<vc<T>>; using vll = vc<ll>; using vvll = vvc<ll>; using vld = vc<ld>; using vvld = vvc<ld>; using vs = vc<string>; using vvs = vvc<string>; template <class T, class U> using um = unordered_map<T, U>; template <class T> using pq = priority_queue<T>; template <class T> using pqa = priority_queue<T, vc<T>, greater<T>>; template <class T> using us = unordered_set<T>; #define TREP(T, i, m, n) for (T i = (m), i##_len = (T)(n); i < i##_len; ++(i)) #define TREPM(T, i, m, n) for (T i = (m), i##_max = (T)(n); i <= i##_max; ++(i)) #define TREPR(T, i, m, n) for (T i = (m), i##_min = (T)(n); i >= i##_min; --(i)) #define TREPD(T, i, m, n, d) for (T i = (m), i##_len = (T)(n); i < i##_len; i += (d)) #define TREPMD(T, i, m, n, d) for (T i = (m), i##_max = (T)(n); i <= i##_max; i += (d)) #define REP(i, m, n) for (ll i = (m), i##_len = (ll)(n); i < i##_len; ++(i)) #define REPM(i, m, n) for (ll i = (m), i##_max = (ll)(n); i <= i##_max; ++(i)) #define REPR(i, m, n) for (ll i = (m), i##_min = (ll)(n); i >= i##_min; --(i)) #define REPD(i, m, n, d) for (ll i = (m), i##_len = (ll)(n); i < i##_len; i += (d)) #define REPMD(i, m, n, d) for (ll i = (m), i##_max = (ll)(n); i <= i##_max; i += (d)) #define REPI(itr, ds) for (auto itr = ds.begin(); itr != ds.end(); itr++) #define REPIR(itr, ds) for (auto itr = ds.rbegin(); itr != ds.rend(); itr++) #define ALL(x) begin(x), end(x) #define SIZE(x) ((ll)(x).size()) #define ISIZE(x) ((int)(x).size()) #define PERM(c) \ sort(ALL(c)); \ for (bool c##p = 1; c##p; c##p = next_permutation(ALL(c))) #define UNIQ(v) v.erase(unique(ALL(v)), v.end()); #define CEIL(a, b) (((a) + (b)-1) / (b)) #define endl '\n' constexpr ll INF = 1'010'000'000'000'000'017LL; constexpr int IINF = 1'000'000'007LL; constexpr ll MOD = 1'000'000'007LL; // 1e9 + 7 // constexpr ll MOD = 998244353; constexpr ld EPS = 1e-12; constexpr ld PI = 3.14159265358979323846; template <typename T> istream &operator>>(istream &is, vc<T> &vec) { // vector 入力 for (T &x : vec) is >> x; return is; } template <typename T> ostream &operator<<(ostream &os, const vc<T> &vec) { // vector 出力 (for dump) os << "{"; REP(i, 0, SIZE(vec)) os << vec[i] << (i == i_len - 1 ? "" : ", "); os << "}"; return os; } template <typename T> ostream &operator>>(ostream &os, const vc<T> &vec) { // vector 出力 (inline) REP(i, 0, SIZE(vec)) os << vec[i] << (i == i_len - 1 ? "\n" : " "); return os; } template <typename T, size_t _Nm> istream &operator>>(istream &is, array<T, _Nm> &arr) { // array 入力 REP(i, 0, SIZE(arr)) is >> arr[i]; return is; } template <typename T, size_t _Nm> ostream &operator<<(ostream &os, const array<T, _Nm> &arr) { // array 出力 (for dump) os << "{"; REP(i, 0, SIZE(arr)) os << arr[i] << (i == i_len - 1 ? "" : ", "); os << "}"; return os; } template <typename T, typename U> istream &operator>>(istream &is, pair<T, U> &pair_var) { // pair 入力 is >> pair_var.first >> pair_var.second; return is; } template <typename T, typename U> ostream &operator<<(ostream &os, const pair<T, U> &pair_var) { // pair 出力 os << "(" << pair_var.first << ", " << pair_var.second << ")"; return os; } // map, um, set, us 出力 template <class T> ostream &out_iter(ostream &os, const T &map_var) { os << "{"; REPI(itr, map_var) { os << *itr; auto itrcp = itr; if (++itrcp != map_var.end()) os << ", "; } return os << "}"; } template <typename T, typename U> ostream &operator<<(ostream &os, const map<T, U> &map_var) { return out_iter(os, map_var); } template <typename T, typename U> ostream &operator<<(ostream &os, const um<T, U> &map_var) { os << "{"; REPI(itr, map_var) { auto [key, value] = *itr; os << "(" << key << ", " << value << ")"; auto itrcp = itr; if (++itrcp != map_var.end()) os << ", "; } os << "}"; return os; } template <typename T> ostream &operator<<(ostream &os, const set<T> &set_var) { return out_iter(os, set_var); } template <typename T> ostream &operator<<(ostream &os, const us<T> &set_var) { return out_iter(os, set_var); } template <typename T> ostream &operator<<(ostream &os, const pq<T> &pq_var) { pq<T> pq_cp(pq_var); os << "{"; if (!pq_cp.empty()) { os << pq_cp.top(), pq_cp.pop(); while (!pq_cp.empty()) os << ", " << pq_cp.top(), pq_cp.pop(); } return os << "}"; } // tuple 出力 template <size_t N = 0, bool end_line = false, typename... Args> ostream &operator<<(ostream &os, tuple<Args...> &a) { if constexpr (N < std::tuple_size_v<tuple<Args...>>) { os << get<N>(a); if constexpr (N + 1 < std::tuple_size_v<tuple<Args...>>) { os << ' '; } else if constexpr (end_line) { os << '\n'; } return operator<< <N + 1, end_line>(os, a); } return os; } template <typename... Args> void print_tuple(tuple<Args...> &a) { operator<< <0, true>(cout, a); } void pprint() { cout << endl; } template <class Head, class... Tail> void pprint(Head &&head, Tail &&...tail) { cout << head; if (sizeof...(Tail) > 0) cout << ' '; pprint(move(tail)...); } // dump #define DUMPOUT cerr void dump_func() { DUMPOUT << endl; } template <class Head, class... Tail> void dump_func(Head &&head, Tail &&...tail) { DUMPOUT << head; if (sizeof...(Tail) > 0) DUMPOUT << ", "; dump_func(move(tail)...); } // chmax (更新「される」かもしれない値が前) template <typename T, typename U, typename Comp = less<>> bool chmax(T &xmax, const U &x, Comp comp = {}) { if (comp(xmax, x)) { xmax = x; return true; } return false; } // chmin (更新「される」かもしれない値が前) template <typename T, typename U, typename Comp = less<>> bool chmin(T &xmin, const U &x, Comp comp = {}) { if (comp(x, xmin)) { xmin = x; return true; } return false; } // ローカル用 #ifndef ONLINE_JUDGE #define DEBUG_ #endif #ifndef MYLOCAL #undef DEBUG_ #endif #ifdef DEBUG_ #define DEB #define dump(...) \ DUMPOUT << " " << string(#__VA_ARGS__) << ": " \ << "[" << to_string(__LINE__) << ":" << __FUNCTION__ << "]" << endl \ << " ", \ dump_func(__VA_ARGS__) #else #define DEB if (false) #define dump(...) #endif #define VAR(type, ...) \ type __VA_ARGS__; \ assert((cin >> __VA_ARGS__)); template <typename T> istream &operator,(istream &is, T &rhs) { return is >> rhs; } template <typename T> ostream &operator,(ostream &os, const T &rhs) { return os << ' ' << rhs; } struct AtCoderInitialize { static constexpr int IOS_PREC = 15; static constexpr bool AUTOFLUSH = false; AtCoderInitialize() { ios_base::sync_with_stdio(false), cin.tie(nullptr), cout.tie(nullptr); cout << fixed << setprecision(IOS_PREC); if (AUTOFLUSH) cout << unitbuf; } } ATCODER_INITIALIZE; void Yn(bool p) { cout << (p ? "Yes" : "No") << endl; } void YN(bool p) { cout << (p ? "YES" : "NO") << endl; } template <typename T> constexpr void operator--(vc<T> &v, int) noexcept { for (int i = 0; i < ISIZE(v); ++i) v[i]--; } template <typename T> constexpr void operator++(vc<T> &v, int) noexcept { for (int i = 0; i < ISIZE(v); ++i) v[i]++; } /* #endregion */ // #include <atcoder/all> // using namespace atcoder; /* #region Graph */ // エッジ(本来エッジは双方向だが,ここでは単方向で管理) template <class weight_t = int, class flow_t = int> struct Edge { int src; // エッジ始点となる頂点 int dst; // エッジ終点となる頂点 weight_t weight; // 重み flow_t cap; Edge() : src(0), dst(0), weight(0) {} Edge(int src, int dst, weight_t weight) : src(src), dst(dst), weight(weight) {} Edge(int src, int dst, weight_t weight, flow_t cap) : src(src), dst(dst), weight(weight), cap(cap) {} // Edge 標準出力 friend ostream &operator<<(ostream &os, Edge &edge) { os << "(" << edge.src << " -> " << edge.dst << ", " << edge.weight << ")"; return os; } }; // 同じ頂点を始点とするエッジ集合 template <class weight_t = int, class flow_t = int> class Node : public vc<Edge<weight_t, flow_t>> { public: int idx; Node() : vc<Edge<weight_t, flow_t>>() {} // void add(int a, int b, weight_t w, flow_t cap) { this->emplace_back(a, b, w, cap); }; }; // graph[i] := 頂点 i を始点とするエッジ集合 template <class weight_t = int, class flow_t = int> class Graph : public vc<Node<weight_t, flow_t>> { public: Graph() : vc<Node<weight_t, flow_t>>() {} Graph(int n) : vc<Node<weight_t, flow_t>>(n) { REP(i, 0, n)(*this)[i].idx = i; } /** 単方向 */ void add_arc(int a, int b, weight_t w = 1, flow_t cap = 1) { (*this)[a].emplace_back(a, b, w, cap); } /** 双方向 */ void add_edge(int a, int b, weight_t w = 1, flow_t cap = 1) { add_arc(a, b, w, cap), add_arc(b, a, w, cap); } /** ノード追加 */ int add_node() { int idx = (int)this->size(); this->emplace_back(); Node<weight_t, flow_t> &node = this->back(); node.idx = idx; return idx; } }; // using Array = vc<Weight>; // using Matrix = vc<Array>; /* #endregion */ /* #region LCA */ template <class weight_t = int, class flow_t = int> class LCA { public: const int n = 0; const int log2_n = 0; vc<vc<int>> parent; vc<int> depth; vc<weight_t> weight_distances; using G = Graph<weight_t, flow_t>; LCA() {} // コンストラクタ,前処理 O(N log N) LCA(const G &g, int root) : n(g.size()), log2_n(log2(n) + 1), parent(log2_n, vc<int>(n)), depth(n), weight_distances(n) { dfs(g, root, -1, 0, (weight_t)0); REP(k, 0, log2_n - 1) REP(v, 0, SIZE(g)) parent[k + 1][v] = (parent[k][v] < 0) ? -1 : parent[k][parent[k][v]]; } // 根からの距離と1つ先の頂点を求める void dfs(const G &g, int v, int p, int d, weight_t w) { parent[0][v] = p, depth[v] = d; weight_distances[v] = w; for (const Edge<weight_t, flow_t> &e : g[v]) if (e.dst != p) dfs(g, e.dst, v, d + 1, w + e.weight); } // 頂点 u, v の LCA を求めて返す,O(log N) int get(int u, int v) const { if (depth[u] > depth[v]) std::swap(u, v); // 深い方を浅い方と同じ浅さまで移動することで,LCA までの深さを同じにする REP(k, 0, log2_n) if ((depth[v] - depth[u]) >> k & 1) v = parent[k][v]; if (u == v) return u; // 二分探索で LCA を求める REPR(k, log2_n - 1, 0) if (parent[k][u] != parent[k][v]) u = parent[k][u], v = parent[k][v]; return parent[0][u]; } // 頂点 v から dist だけ根のほうに遡った頂点を返す. // dist が根までの距離よりも大きいときは -1 を返す. int get_par(int v, int dist) const { // dist 遡れない int v_init_depth = get_depth(v); if (v_init_depth < dist) return -1; int u_depth = v_init_depth - dist; // 深い方を浅い方と同じ浅さまで移動することで,LCA までの深さを同じにする REP(k, 0, log2_n) if ((depth[v] - u_depth) >> k & 1) v = parent[k][v]; return v; } // 根を深さ 0 として,頂点 v の深さを返す.O(1). int get_depth(int v) const { assert(0 <= v && v < n); return depth[v]; } // 頂点 u, v の間を最短距離で結ぶときの辺数を返す.O(log N). int get_distance(int u, int v) const { const int r = get(u, v); return depth[u] + depth[v] - 2 * depth[r]; } // 頂点 u, v の間を最短距離で結ぶときの距離を返す.O(log N). weight_t get_weight_distance(int u, int v) const { const int r = get(u, v); return weight_distances[u] + weight_distances[v] - weight_distances[r] * 2; } // {(src->lca), (lca->dst)} を返す array<vc<int>, 2> get_path2(const int src, const int dst) const { const int common = get(src, dst); vc<int> path_from_src = {src}; { int v = src; while (v != common) { v = parent[0][v]; path_from_src.push_back(v); } } vc<int> path_from_dst = {dst}; { int v = dst; while (v != common) { v = parent[0][v]; path_from_dst.push_back(v); } } reverse(ALL(path_from_dst)); vc<int> &path_to_dst = path_from_dst; return {path_from_src, path_to_dst}; } // src -> dst のパスを返す vc<int> get_path(const int src, const int dst) const { auto [path_from_src, path_to_dst] = get_path2(src, dst); path_from_src.reserve(ISIZE(path_from_src) + ISIZE(path_to_dst)); TREP(int, i, 1, ISIZE(path_to_dst)) { path_from_src.push_back(path_to_dst[i]); } return path_from_src; } }; /* #endregion */ /* #region EulerTour */ template <class weight_t = int> struct EulerTour { Graph<weight_t> &graph; vc<int> in, out; // 頂点→ツアー上のインデックス,の写像 vc<int> tour; // ツアー上のインデックス→頂点,の写像 vc<int> sz; // sz[i] := i を根とする部分木のサイズ vc<weight_t> weight; vc<int> sign; // 1(行きがけ) or -1(帰りがけ) int cnt; EulerTour(int n, Graph<weight_t> &graph) : graph(graph), in(n), out(n), sz(n) { tour.reserve(2 * n); weight.reserve(2 * n); sign.reserve(2 * n); } void dfs(int cur, int par) { for (Edge<weight_t> &e : graph[cur]) { if (e.dst == par) continue; weight.push_back(e.weight), sign.push_back(1), tour.push_back(e.dst); in[e.dst] = cnt++; dfs(e.dst, cur); weight.push_back(-e.weight), sign.push_back(-1), tour.push_back(e.dst); out[e.dst] = cnt++; sz[e.dst] = (out[e.dst] - in[e.dst] + 1) / 2; } } int execute(int root) { cnt = 0; weight.push_back(0), sign.push_back(1), tour.push_back(root); in[root] = cnt++; dfs(root, -1); weight.push_back(0), sign.push_back(-1), tour.push_back(root); out[root] = cnt++; sz[root] = (out[root] - in[root] + 1) / 2; return cnt; } }; /* #endregion */ // Problem void solve() { VAR(ll, n, q); vll a(n - 1), b(n - 1); REP(i, 0, n - 1) cin >> a[i], b[i]; a--, b--; vll s(q), t(q); REP(i, 0, q) cin >> s[i], t[i]; s--, t--; Graph<> graph(n); REP(i, 0, n - 1) graph.add_edge(a[i], b[i]); LCA<> lca(graph, 0); EulerTour tour(n, graph); tour.execute(0); // 0 が根 REP(i, 0, q) { ll d = lca.get_distance(s[i], t[i]); if (d % 2 == 1) { pprint(0); continue; } ll l = lca.get(s[i], t[i]); ll d2 = d / 2; ll dist_sl = lca.get_distance(s[i], l); ll dist_tl = d - dist_sl; // ll par_s = lca.get_par(s[i], d2); // ll par_t = lca.get_par(t[i], d2); if (dist_sl >= d2) { // s から m へは一直線,t からは? if (dist_tl >= d2) { // s からも t からも同じ距離に LCA がある // -> m から伸びる枝のうち,s, t をそれぞれ含む部分木を除く全ての頂点が答え ll ex_s = lca.get_par(s[i], d2 - 1); ll ex_t = lca.get_par(t[i], d2 - 1); ll ans = n - tour.sz[ex_s] - tour.sz[ex_t]; pprint(ans); } else { // m の部分木のうち,s を含む枝を除いた個数が答え. ll m = lca.get_par(s[i], d2); ll ex_s = lca.get_par(s[i], d2 - 1); ll ans = tour.sz[m] - tour.sz[ex_s]; pprint(ans); } } else { // s から m へは一直線ではない.t からは一直線. // -> m の部分木のうち,t を含む枝を除いた個数が答え. ll m = lca.get_par(t[i], d2); ll ex_t = lca.get_par(t[i], d2 - 1); ll ans = tour.sz[m] - tour.sz[ex_t]; // dump(ex_t, m, tour.sz[m], tour.sz[ex_t]); pprint(ans); } } } // entry point int main() { solve(); return 0; }