結果

問題 No.2337 Equidistant
ユーザー poyonpoyon
提出日時 2023-06-02 22:33:30
言語 C++17(gcc12)
(gcc 12.3.0 + boost 1.87.0)
結果
AC  
実行時間 1,533 ms / 4,000 ms
コード長 14,238 bytes
コンパイル時間 3,871 ms
コンパイル使用メモリ 235,716 KB
実行使用メモリ 110,164 KB
最終ジャッジ日時 2024-12-28 20:05:55
合計ジャッジ時間 22,888 ms
ジャッジサーバーID
(参考情報)
judge4 / judge2
このコードへのチャレンジ
(要ログイン)
ファイルパターン 結果
sample AC * 1
other AC * 28
権限があれば一括ダウンロードができます

ソースコード

diff #

// clang-format off
#ifdef _LOCAL
    #include <pch.hpp>
#else
    #include <bits/stdc++.h>
    #define cerr if (false) cerr
    #define debug_bar
    #define debug(...)
    #define debug2(vv)
    #define debug3(vvv)
#endif

using namespace std;
using ll = long long;
using ld = long double;
using str = string;
using P = pair<ll,ll>;
using VP = vector<P>;
using VVP = vector<VP>;
using VC = vector<char>;
using VS = vector<string>;
using VVS = vector<VS>;
using VI = vector<int>;
using VVI = vector<VI>;
using VVVI = vector<VVI>;
using VLL = vector<ll>;
using VVLL = vector<VLL>;
using VVVLL = vector<VVLL>;
using VB = vector<bool>;
using VVB = vector<VB>;
using VVVB = vector<VVB>;
using VD = vector<double>;
using VVD = vector<VD>;
using VVVD = vector<VVD>;
#define FOR(i,l,r) for (ll i = (l); i < (r); ++i)
#define RFOR(i,l,r) for (ll i = (r)-1; (l) <= i; --i)
#define REP(i,n) FOR(i,0,n)
#define RREP(i,n) RFOR(i,0,n)
#define FORE(e,c) for (auto&& e : c)
#define ALL(c) (c).begin(), (c).end()
#define SORT(c) sort(ALL(c))
#define RSORT(c) sort((c).rbegin(), (c).rend())
#define MIN(c) *min_element(ALL(c))
#define MAX(c) *max_element(ALL(c))
#define COUNT(c,v) count(ALL(c),(v))
#define len(c) ((ll)(c).size())
#define BIT(b,i) (((b)>>(i)) & 1)
#define PCNT(b) ((ll)__builtin_popcountll(b))
#define LB(c,v) distance((c).begin(), lower_bound(ALL(c), (v)))
#define UB(c,v) distance((c).begin(), upper_bound(ALL(c), (v)))
#define UQ(c) do { SORT(c); (c).erase(unique(ALL(c)), (c).end()); (c).shrink_to_fit(); } while (0)
#define END(...) do { print(__VA_ARGS__); exit(0); } while (0)
constexpr ld EPS = 1e-10;
constexpr ld PI  = acosl(-1.0);
constexpr int inf = (1 << 30) - (1 << 15);   // 1,073,709,056
constexpr ll INF = (1LL << 62) - (1LL << 31);  // 4,611,686,016,279,904,256
template<class... T> void input(T&... a) { (cin >> ... >> a); }
void print() { cout << '\n'; }
template<class T> void print(const T& a) { cout << a << '\n'; }
template<class P1, class P2> void print(const pair<P1, P2>& a) { cout << a.first << " " << a.second << '\n'; }
template<class T, class... Ts> void print(const T& a, const Ts&... b) { cout << a; (cout << ... << (cout << ' ', b)); cout << '\n'; }
template<class T> void cout_line(const vector<T>& ans, int l, int r) { for (int i = l; i < r; i++) { if (i != l) { cout << ' '; } cout << ans[i]; } cout << '\n'; }
template<class T> void print(const vector<T>& a) { cout_line(a, 0, a.size()); }
template<class S, class T> bool chmin(S& a, const T b) { if (b < a) { a = b; return 1; } return 0; }
template<class S, class T> bool chmax(S& a, const T b) { if (a < b) { a = b; return 1; } return 0; }
template<class T> T SUM(const vector<T>& A) { return accumulate(ALL(A), T(0)); }
template<class T> vector<T> cumsum(const vector<T>& A, bool offset = false) { int N = A.size(); vector<T> S(N+1, 0); for (int i = 0; i < N; i++) { S[i+1] = S[i] + A[i]; } if (not offset) { S.erase(S.begin()); } return S; }
template<class T> string to_binary(T x, int B = 0) { string s; while (x) { s += ('0' + (x & 1)); x >>= 1; } while ((int)s.size() < B) { s += '0'; } reverse(s.begin(), s.end()); return s; }
template<class F> ll binary_search(const F& is_ok, ll ok, ll ng) { while (abs(ok - ng) > 1) { ll m = (ok + ng) / 2; (is_ok(m) ? ok : ng) = m; } return ok; }
template<class F> double binary_search_real(const F& is_ok, double ok, double ng, int iter = 90) { for (int i = 0; i < iter; i++) { double m = (ok + ng) / 2; (is_ok(m) ? ok : ng) = m; } return ok; }
template<class T> using PQ_max = priority_queue<T>;
template<class T> using PQ_min = priority_queue<T, vector<T>, greater<T>>;
template<class T> T pick(stack<T>& s) { assert(not s.empty()); T x = s.top(); s.pop(); return x; }
template<class T> T pick(queue<T>& q) { assert(not q.empty()); T x = q.front(); q.pop(); return x; }
template<class T> T pick_front(deque<T>& dq) { assert(not dq.empty()); T x = dq.front(); dq.pop_front(); return x; }
template<class T> T pick_back(deque<T>& dq) { assert(not dq.empty()); T x = dq.back(); dq.pop_back(); return x; }
template<class T> T pick(PQ_min<T>& pq) { assert(not pq.empty()); T x = pq.top(); pq.pop(); return x; }
template<class T> T pick(PQ_max<T>& pq) { assert(not pq.empty()); T x = pq.top(); pq.pop(); return x; }
template<class T> T pick(vector<T>& v) { assert(not v.empty()); T x = v.back(); v.pop_back(); return x; }
int to_int(const char c) { if (islower(c)) { return (c - 'a'); } if (isupper(c)) { return (c - 'A'); } if (isdigit(c)) { return (c - '0'); } assert(false); }
char to_a(const int i) { assert(0 <= i && i < 26); return ('a' + i); }
char to_A(const int i) { assert(0 <= i && i < 26); return ('A' + i); }
char to_d(const int i) { assert(0 <= i && i <= 9); return ('0' + i); }
ll min(int a, ll b) { return min((ll)a, b); }
ll min(ll a, int b) { return min(a, (ll)b); }
ll max(int a, ll b) { return max((ll)a, b); }
ll max(ll a, int b) { return max(a, (ll)b); }
ll mod(ll x, ll m) { assert(m > 0); return (x % m + m) % m; }
ll ceil(ll a, ll b) { if (b < 0) { return ceil(-a, -b); } assert(b > 0); return (a < 0 ? a / b : (a + b - 1) / b); }
ll floor(ll a, ll b) { if (b < 0) { return floor(-a, -b); } assert(b > 0); return (a > 0 ? a / b : (a - b + 1) / b); }
ll powint(ll x, ll n) { assert(n >= 0); if (n == 0) { return 1; }; ll res = powint(x, n>>1); res *= res; if (n & 1) { res *= x; } return res; }
pair<ll,ll> divmod(ll a, ll b) { assert(b != 0); ll q = floor(a, b); return make_pair(q, a - q * b); }
ll bitlen(ll b) { if (b <= 0) { return 0; } return (64LL - __builtin_clzll(b)); }
ll digitlen(ll n) { assert(n >= 0); if (n == 0) { return 1; } ll sum = 0; while (n > 0) { sum++; n /= 10; } return sum; }
ll msb(ll b) { return (b <= 0 ? -1 : (63 - __builtin_clzll(b))); }
ll lsb(ll b) { return (b <= 0 ? -1 : __builtin_ctzll(b)); }
// --------------------------------------------------------


// LCA (Lowest Common Ancestor): 最小共通祖先
//   - 前計算 : O(N log N)
//   - クエリ : O(log N)
struct LCA {
  public:
    vector<vector<pair<int,ll>>> G;
    vector<int> depth;  // depth[u] := 頂点 u の根からの深さ

    LCA() {}
    LCA(int n, int r = 0) : N(n), root(r) {
        assert(0 <= root && root < N);
        K = 1; while ((1<<K) <= N) { K++; }
        G.resize(N);
        parent.resize(K, vector<int>(N));
        depth.resize(N);
        dist.resize(N,0);
    }

    // 双方向に辺を張る
    void add_edge(int u, int v, ll w) {
        assert(0 <= u && u < N);
        assert(0 <= v && v < N);
        G[u].emplace_back(v, w);
        G[v].emplace_back(u, w);
    }

    void build() {
        // 初期化
        auto dfs = [&](auto&& self, int u, int p, int d, ll sum_w) -> void {
            parent[0][u] = p;
            depth[u] = d;
            dist[u] = sum_w;
            for (const auto& [v, w] : G[u]) if (v != p) {
                self(self, v, u, d+1, sum_w + w);
            }
        };
        dfs(dfs, root, -1, 0, 0);

        // ダブリング
        for (int k = 1; k < K; k++) {
            for (int u = 0; u < N; u++) {
                if (parent[k-1][u] < 0) {
                    parent[k][u] = -1;
                } else {
                    parent[k][u] = parent[k-1][parent[k-1][u]];
                }
            }
        }
    }

    // 頂点 u から深さ d だけ親を辿る (level-ancestor)
    // 辿った先が木上にあることを想定している
    //   - d <= depth[u]
    int la(int u, int d) {
        assert(0 <= u && u < N);
        for (int k = K-1; 0 <= k; k--) if (BIT(d, k)) {
            u = parent[k][u];
        }
        return u;
    }

    // 頂点 u, v の LCA
    int query(int u, int v) {
        assert(0 <= u && u < N);
        assert(0 <= v && v < N);
        if (depth[u] < depth[v]) swap(u, v);
        // depth[u] >= depth[v]
        u = la(u, depth[u] - depth[v]);  // (u, v) の深さを揃える
        if (u == v) return u;
        for (int k = K-1; 0 <= k; k--) {
            if (parent[k][u] != parent[k][v]) {
                u = parent[k][u];
                v = parent[k][v];
            }
        }
        return parent[0][u];
    }

    // (u, v) パス間の辺数
    int distance_e(int u, int v) {
        assert(0 <= u && u < N);
        assert(0 <= v && v < N);
        return depth[u] + depth[v] - 2*depth[query(u, v)];
    }

    // (u, v) パス間の距離
    ll distance_w(int u, int v) {
        assert(0 <= u && u < N);
        assert(0 <= v && v < N);
        return dist[u] + dist[v] - 2*dist[query(u, v)];
    }

    // 頂点 w が (u, v) パス上に存在するか
    bool on_path(int u, int v, int w) {
        assert(0 <= u && u < N);
        assert(0 <= v && v < N);
        assert(0 <= w && w < N);
        return distance_e(u, w) + distance_e(w, v) == distance_e(u, v);
    }

//   private:
    int N, root, K;  // 頂点数,根,二進表記の桁数(ダブリング用)
    vector<vector<int>> parent;  // parent[k][u]: 頂点 u から 2^k 回親を辿って到達する頂点 (根を越えたら -1)
    vector<ll> dist;  // dist[u] :=  頂点 u の根からの距離 (パス上の重みの総和)
};

// References:
//   <https://null-mn.hatenablog.com/entry/2020/04/14/124151>
//   <https://qiita.com/keymoon/items/2a52f1b0fb7ef67fb89e>
//   <https://hcpc-hokudai.github.io/archive/dynamic_programming_rerooting.pdf>
//   <https://algo-logic.info/tree-dp/>
//   <https://github.com/atcoder/ac-library/blob/master/atcoder/segtree.hpp> (for implementation)

/**
 * @brief 全方位木 DP (Rerooting DP)
 * 
 * @tparam S 可換モノイドの型 (モノイド: 結合律を満たし単位元が存在する代数構造)
 * @tparam (*op)(S,S) 二項演算 (辺属性のマージ関数)
 * @tparam (*fv)(S,int,bool,bool) 辺属性→頂点属性にする関数 (S,頂点番号,根か,葉か)
 * @tparam (*fe)(S,int,int,ll) 頂点属性→辺属性にする関数 (S,始点番号,終点番号,重み)
 * @tparam (*e)() 単位元
 */
template <class S, S (*op)(S, S), S (*fv)(S, int, bool, bool), S (*fe)(S, int, int, ll), S (*e)()>
struct rerooting {
  public:
    vector<vector<pair<int,ll>>> G;
    rerooting(int n) : N(n) {
        G.resize(N);
        dp.resize(N);
        ans.resize(N);
    }

    // 頂点 u から頂点 v に有向辺を張る
    //   - 無向グラフの場合は両方向を追加する必要あり
    void add_edge(int u, int v, ll w) {
        assert(0 <= u && u < N);
        assert(0 <= v && v < N);
        G[u].emplace_back(v, w);
    }

    void build() {
        for (int u = 0; u < N; u++) { dp[u].resize(G[u].size()); }
        dfs1(0, -1);
        dfs2(0, -1, e());
    }

    // 下向きの dp[u][i] を求める
    S dfs1(int u, int p) {
        S dp_s = e();
        int m = G[u].size();
        for (int i = 0; i < m; i++) {
            const auto& [v, w] = G[u][i];
            if (v == p) { continue; }
            dp[u][i] = dfs1(v, u);
            dp_s = op(dp_s, fe(dp[u][i], u, v, w));
        }
        bool is_leaf = (p == -1 ? false : m == 1);
        return fv(dp_s, u, false, is_leaf);
    }

    // 上向きの dp[u][i] (= px) を伝搬しながら ans[u] を求める
    void dfs2(int u, int p, S px) {
        int m = G[u].size();

        // 右から累積積を前計算
        vector<S> dp_R(m+1);
        dp_R[m] = e();
        for (int i = m-1; 0 <= i; i--) {
            const auto& [v, w] = G[u][i];
            if (v == p) { dp[u][i] = px; }
            dp_R[i] = op(fe(dp[u][i], u, v, w), dp_R[i+1]);
        }

        // 頂点 u を根とした木に対する答え
        ans[u] = fv(dp_R[0], u, true, false);  /** NOTE: 根以外で次数が 1 の頂点を葉と定義 **/

        // 左から累積積を計算しながら dfs
        S dp_l = e();
        bool is_leaf = (p == -1 ? m == 1 : false);
        for (int i = 0; i < m; i++) {
            const auto& [v, w] = G[u][i];
            if (v != p) { dfs2(v, u, fv(op(dp_l, dp_R[i+1]), u, false, is_leaf)); }
            dp_l = op(dp_l, fe(dp[u][i], u, v, w));
        }
    }

    S query(int u) const noexcept {
        assert(0 <= u && u < N);
        return ans[u];
    }

//   private:
    int N;
    vector<vector<S>> dp;  // dp[u][i] := u から出る i 番目の有向辺の先の部分木に対応する値
    vector<S> ans;  // ans[u] := u を根とした木に対する答え
};


using Mono = int;
Mono op(Mono a, Mono b) { return a + b; };
Mono fv(Mono x, [[maybe_unused]] int u, [[maybe_unused]] bool is_root, [[maybe_unused]] bool is_leaf) {
    return x + 1;
}
Mono fe(Mono x, [[maybe_unused]] int s, [[maybe_unused]] int t, [[maybe_unused]] ll w) {
    return x;
};
Mono e() { return Mono{0}; };

// clang-format on
int main() {
    ios::sync_with_stdio(false);
    cin.tie(nullptr);
    cout << fixed << setprecision(15);

    int N, Q;
    cin >> N >> Q;
    LCA lca(N, 0);
    rerooting<Mono, op, fv, fe, e> re(N);
    const vector<vector<pair<int, ll>>>& G = re.G;
    REP (_, N - 1) {
        int u, v;
        cin >> u >> v;
        u--;
        v--;
        lca.add_edge(u, v, 1);
        re.add_edge(u, v, 1);
        re.add_edge(v, u, 1);
    }
    lca.build();
    re.build();

    map<pair<int, int>, int> mp;
    REP (u, N) {
        REP (i, len(G[u])) {
            auto v = G[u][i].first;
            mp[{u, v}] = i;
        }
    }

    REP (_, Q) {
        int S, T;
        input(S, T);
        S--;
        T--;

        int d = lca.distance_e(S, T);

        int ans = 0;
        if (d % 2 == 0) {
            if (lca.depth[S] >= lca.depth[T]) { swap(S, T); }
            int C = lca.la(T, d / 2);

            ans = N;

            int t = lca.la(T, d / 2 - 1);
            int i = mp[{C, t}];
            ans -= re.dp[C][i];

            int U = lca.query(S, T);
            if (U == S) {
                int t = lca.la(C, 1);
                int i = mp[{C, t}];
                ans -= re.dp[C][i];
            } else if (U == C) {
                int t = lca.la(S, d / 2 - 1);
                int i = mp[{C, t}];
                ans -= re.dp[C][i];
            } else {
                int t = lca.parent[0][C];
                int i = mp[{C, t}];
                ans -= re.dp[C][i];
            }
        }
        print(ans);
    }

    return 0;
}
0