結果
問題 | No.2337 Equidistant |
ユーザー | poyon |
提出日時 | 2023-06-02 22:33:30 |
言語 | C++17(gcc12) (gcc 12.3.0 + boost 1.87.0) |
結果 |
AC
|
実行時間 | 1,533 ms / 4,000 ms |
コード長 | 14,238 bytes |
コンパイル時間 | 3,871 ms |
コンパイル使用メモリ | 235,716 KB |
実行使用メモリ | 110,164 KB |
最終ジャッジ日時 | 2024-12-28 20:05:55 |
合計ジャッジ時間 | 22,888 ms |
ジャッジサーバーID (参考情報) |
judge4 / judge2 |
(要ログイン)
ファイルパターン | 結果 |
---|---|
sample | AC * 1 |
other | AC * 28 |
ソースコード
// clang-format off #ifdef _LOCAL #include <pch.hpp> #else #include <bits/stdc++.h> #define cerr if (false) cerr #define debug_bar #define debug(...) #define debug2(vv) #define debug3(vvv) #endif using namespace std; using ll = long long; using ld = long double; using str = string; using P = pair<ll,ll>; using VP = vector<P>; using VVP = vector<VP>; using VC = vector<char>; using VS = vector<string>; using VVS = vector<VS>; using VI = vector<int>; using VVI = vector<VI>; using VVVI = vector<VVI>; using VLL = vector<ll>; using VVLL = vector<VLL>; using VVVLL = vector<VVLL>; using VB = vector<bool>; using VVB = vector<VB>; using VVVB = vector<VVB>; using VD = vector<double>; using VVD = vector<VD>; using VVVD = vector<VVD>; #define FOR(i,l,r) for (ll i = (l); i < (r); ++i) #define RFOR(i,l,r) for (ll i = (r)-1; (l) <= i; --i) #define REP(i,n) FOR(i,0,n) #define RREP(i,n) RFOR(i,0,n) #define FORE(e,c) for (auto&& e : c) #define ALL(c) (c).begin(), (c).end() #define SORT(c) sort(ALL(c)) #define RSORT(c) sort((c).rbegin(), (c).rend()) #define MIN(c) *min_element(ALL(c)) #define MAX(c) *max_element(ALL(c)) #define COUNT(c,v) count(ALL(c),(v)) #define len(c) ((ll)(c).size()) #define BIT(b,i) (((b)>>(i)) & 1) #define PCNT(b) ((ll)__builtin_popcountll(b)) #define LB(c,v) distance((c).begin(), lower_bound(ALL(c), (v))) #define UB(c,v) distance((c).begin(), upper_bound(ALL(c), (v))) #define UQ(c) do { SORT(c); (c).erase(unique(ALL(c)), (c).end()); (c).shrink_to_fit(); } while (0) #define END(...) do { print(__VA_ARGS__); exit(0); } while (0) constexpr ld EPS = 1e-10; constexpr ld PI = acosl(-1.0); constexpr int inf = (1 << 30) - (1 << 15); // 1,073,709,056 constexpr ll INF = (1LL << 62) - (1LL << 31); // 4,611,686,016,279,904,256 template<class... T> void input(T&... a) { (cin >> ... >> a); } void print() { cout << '\n'; } template<class T> void print(const T& a) { cout << a << '\n'; } template<class P1, class P2> void print(const pair<P1, P2>& a) { cout << a.first << " " << a.second << '\n'; } template<class T, class... Ts> void print(const T& a, const Ts&... b) { cout << a; (cout << ... << (cout << ' ', b)); cout << '\n'; } template<class T> void cout_line(const vector<T>& ans, int l, int r) { for (int i = l; i < r; i++) { if (i != l) { cout << ' '; } cout << ans[i]; } cout << '\n'; } template<class T> void print(const vector<T>& a) { cout_line(a, 0, a.size()); } template<class S, class T> bool chmin(S& a, const T b) { if (b < a) { a = b; return 1; } return 0; } template<class S, class T> bool chmax(S& a, const T b) { if (a < b) { a = b; return 1; } return 0; } template<class T> T SUM(const vector<T>& A) { return accumulate(ALL(A), T(0)); } template<class T> vector<T> cumsum(const vector<T>& A, bool offset = false) { int N = A.size(); vector<T> S(N+1, 0); for (int i = 0; i < N; i++) { S[i+1] = S[i] + A[i]; } if (not offset) { S.erase(S.begin()); } return S; } template<class T> string to_binary(T x, int B = 0) { string s; while (x) { s += ('0' + (x & 1)); x >>= 1; } while ((int)s.size() < B) { s += '0'; } reverse(s.begin(), s.end()); return s; } template<class F> ll binary_search(const F& is_ok, ll ok, ll ng) { while (abs(ok - ng) > 1) { ll m = (ok + ng) / 2; (is_ok(m) ? ok : ng) = m; } return ok; } template<class F> double binary_search_real(const F& is_ok, double ok, double ng, int iter = 90) { for (int i = 0; i < iter; i++) { double m = (ok + ng) / 2; (is_ok(m) ? ok : ng) = m; } return ok; } template<class T> using PQ_max = priority_queue<T>; template<class T> using PQ_min = priority_queue<T, vector<T>, greater<T>>; template<class T> T pick(stack<T>& s) { assert(not s.empty()); T x = s.top(); s.pop(); return x; } template<class T> T pick(queue<T>& q) { assert(not q.empty()); T x = q.front(); q.pop(); return x; } template<class T> T pick_front(deque<T>& dq) { assert(not dq.empty()); T x = dq.front(); dq.pop_front(); return x; } template<class T> T pick_back(deque<T>& dq) { assert(not dq.empty()); T x = dq.back(); dq.pop_back(); return x; } template<class T> T pick(PQ_min<T>& pq) { assert(not pq.empty()); T x = pq.top(); pq.pop(); return x; } template<class T> T pick(PQ_max<T>& pq) { assert(not pq.empty()); T x = pq.top(); pq.pop(); return x; } template<class T> T pick(vector<T>& v) { assert(not v.empty()); T x = v.back(); v.pop_back(); return x; } int to_int(const char c) { if (islower(c)) { return (c - 'a'); } if (isupper(c)) { return (c - 'A'); } if (isdigit(c)) { return (c - '0'); } assert(false); } char to_a(const int i) { assert(0 <= i && i < 26); return ('a' + i); } char to_A(const int i) { assert(0 <= i && i < 26); return ('A' + i); } char to_d(const int i) { assert(0 <= i && i <= 9); return ('0' + i); } ll min(int a, ll b) { return min((ll)a, b); } ll min(ll a, int b) { return min(a, (ll)b); } ll max(int a, ll b) { return max((ll)a, b); } ll max(ll a, int b) { return max(a, (ll)b); } ll mod(ll x, ll m) { assert(m > 0); return (x % m + m) % m; } ll ceil(ll a, ll b) { if (b < 0) { return ceil(-a, -b); } assert(b > 0); return (a < 0 ? a / b : (a + b - 1) / b); } ll floor(ll a, ll b) { if (b < 0) { return floor(-a, -b); } assert(b > 0); return (a > 0 ? a / b : (a - b + 1) / b); } ll powint(ll x, ll n) { assert(n >= 0); if (n == 0) { return 1; }; ll res = powint(x, n>>1); res *= res; if (n & 1) { res *= x; } return res; } pair<ll,ll> divmod(ll a, ll b) { assert(b != 0); ll q = floor(a, b); return make_pair(q, a - q * b); } ll bitlen(ll b) { if (b <= 0) { return 0; } return (64LL - __builtin_clzll(b)); } ll digitlen(ll n) { assert(n >= 0); if (n == 0) { return 1; } ll sum = 0; while (n > 0) { sum++; n /= 10; } return sum; } ll msb(ll b) { return (b <= 0 ? -1 : (63 - __builtin_clzll(b))); } ll lsb(ll b) { return (b <= 0 ? -1 : __builtin_ctzll(b)); } // -------------------------------------------------------- // LCA (Lowest Common Ancestor): 最小共通祖先 // - 前計算 : O(N log N) // - クエリ : O(log N) struct LCA { public: vector<vector<pair<int,ll>>> G; vector<int> depth; // depth[u] := 頂点 u の根からの深さ LCA() {} LCA(int n, int r = 0) : N(n), root(r) { assert(0 <= root && root < N); K = 1; while ((1<<K) <= N) { K++; } G.resize(N); parent.resize(K, vector<int>(N)); depth.resize(N); dist.resize(N,0); } // 双方向に辺を張る void add_edge(int u, int v, ll w) { assert(0 <= u && u < N); assert(0 <= v && v < N); G[u].emplace_back(v, w); G[v].emplace_back(u, w); } void build() { // 初期化 auto dfs = [&](auto&& self, int u, int p, int d, ll sum_w) -> void { parent[0][u] = p; depth[u] = d; dist[u] = sum_w; for (const auto& [v, w] : G[u]) if (v != p) { self(self, v, u, d+1, sum_w + w); } }; dfs(dfs, root, -1, 0, 0); // ダブリング for (int k = 1; k < K; k++) { for (int u = 0; u < N; u++) { if (parent[k-1][u] < 0) { parent[k][u] = -1; } else { parent[k][u] = parent[k-1][parent[k-1][u]]; } } } } // 頂点 u から深さ d だけ親を辿る (level-ancestor) // 辿った先が木上にあることを想定している // - d <= depth[u] int la(int u, int d) { assert(0 <= u && u < N); for (int k = K-1; 0 <= k; k--) if (BIT(d, k)) { u = parent[k][u]; } return u; } // 頂点 u, v の LCA int query(int u, int v) { assert(0 <= u && u < N); assert(0 <= v && v < N); if (depth[u] < depth[v]) swap(u, v); // depth[u] >= depth[v] u = la(u, depth[u] - depth[v]); // (u, v) の深さを揃える if (u == v) return u; for (int k = K-1; 0 <= k; k--) { if (parent[k][u] != parent[k][v]) { u = parent[k][u]; v = parent[k][v]; } } return parent[0][u]; } // (u, v) パス間の辺数 int distance_e(int u, int v) { assert(0 <= u && u < N); assert(0 <= v && v < N); return depth[u] + depth[v] - 2*depth[query(u, v)]; } // (u, v) パス間の距離 ll distance_w(int u, int v) { assert(0 <= u && u < N); assert(0 <= v && v < N); return dist[u] + dist[v] - 2*dist[query(u, v)]; } // 頂点 w が (u, v) パス上に存在するか bool on_path(int u, int v, int w) { assert(0 <= u && u < N); assert(0 <= v && v < N); assert(0 <= w && w < N); return distance_e(u, w) + distance_e(w, v) == distance_e(u, v); } // private: int N, root, K; // 頂点数,根,二進表記の桁数(ダブリング用) vector<vector<int>> parent; // parent[k][u]: 頂点 u から 2^k 回親を辿って到達する頂点 (根を越えたら -1) vector<ll> dist; // dist[u] := 頂点 u の根からの距離 (パス上の重みの総和) }; // References: // <https://null-mn.hatenablog.com/entry/2020/04/14/124151> // <https://qiita.com/keymoon/items/2a52f1b0fb7ef67fb89e> // <https://hcpc-hokudai.github.io/archive/dynamic_programming_rerooting.pdf> // <https://algo-logic.info/tree-dp/> // <https://github.com/atcoder/ac-library/blob/master/atcoder/segtree.hpp> (for implementation) /** * @brief 全方位木 DP (Rerooting DP) * * @tparam S 可換モノイドの型 (モノイド: 結合律を満たし単位元が存在する代数構造) * @tparam (*op)(S,S) 二項演算 (辺属性のマージ関数) * @tparam (*fv)(S,int,bool,bool) 辺属性→頂点属性にする関数 (S,頂点番号,根か,葉か) * @tparam (*fe)(S,int,int,ll) 頂点属性→辺属性にする関数 (S,始点番号,終点番号,重み) * @tparam (*e)() 単位元 */ template <class S, S (*op)(S, S), S (*fv)(S, int, bool, bool), S (*fe)(S, int, int, ll), S (*e)()> struct rerooting { public: vector<vector<pair<int,ll>>> G; rerooting(int n) : N(n) { G.resize(N); dp.resize(N); ans.resize(N); } // 頂点 u から頂点 v に有向辺を張る // - 無向グラフの場合は両方向を追加する必要あり void add_edge(int u, int v, ll w) { assert(0 <= u && u < N); assert(0 <= v && v < N); G[u].emplace_back(v, w); } void build() { for (int u = 0; u < N; u++) { dp[u].resize(G[u].size()); } dfs1(0, -1); dfs2(0, -1, e()); } // 下向きの dp[u][i] を求める S dfs1(int u, int p) { S dp_s = e(); int m = G[u].size(); for (int i = 0; i < m; i++) { const auto& [v, w] = G[u][i]; if (v == p) { continue; } dp[u][i] = dfs1(v, u); dp_s = op(dp_s, fe(dp[u][i], u, v, w)); } bool is_leaf = (p == -1 ? false : m == 1); return fv(dp_s, u, false, is_leaf); } // 上向きの dp[u][i] (= px) を伝搬しながら ans[u] を求める void dfs2(int u, int p, S px) { int m = G[u].size(); // 右から累積積を前計算 vector<S> dp_R(m+1); dp_R[m] = e(); for (int i = m-1; 0 <= i; i--) { const auto& [v, w] = G[u][i]; if (v == p) { dp[u][i] = px; } dp_R[i] = op(fe(dp[u][i], u, v, w), dp_R[i+1]); } // 頂点 u を根とした木に対する答え ans[u] = fv(dp_R[0], u, true, false); /** NOTE: 根以外で次数が 1 の頂点を葉と定義 **/ // 左から累積積を計算しながら dfs S dp_l = e(); bool is_leaf = (p == -1 ? m == 1 : false); for (int i = 0; i < m; i++) { const auto& [v, w] = G[u][i]; if (v != p) { dfs2(v, u, fv(op(dp_l, dp_R[i+1]), u, false, is_leaf)); } dp_l = op(dp_l, fe(dp[u][i], u, v, w)); } } S query(int u) const noexcept { assert(0 <= u && u < N); return ans[u]; } // private: int N; vector<vector<S>> dp; // dp[u][i] := u から出る i 番目の有向辺の先の部分木に対応する値 vector<S> ans; // ans[u] := u を根とした木に対する答え }; using Mono = int; Mono op(Mono a, Mono b) { return a + b; }; Mono fv(Mono x, [[maybe_unused]] int u, [[maybe_unused]] bool is_root, [[maybe_unused]] bool is_leaf) { return x + 1; } Mono fe(Mono x, [[maybe_unused]] int s, [[maybe_unused]] int t, [[maybe_unused]] ll w) { return x; }; Mono e() { return Mono{0}; }; // clang-format on int main() { ios::sync_with_stdio(false); cin.tie(nullptr); cout << fixed << setprecision(15); int N, Q; cin >> N >> Q; LCA lca(N, 0); rerooting<Mono, op, fv, fe, e> re(N); const vector<vector<pair<int, ll>>>& G = re.G; REP (_, N - 1) { int u, v; cin >> u >> v; u--; v--; lca.add_edge(u, v, 1); re.add_edge(u, v, 1); re.add_edge(v, u, 1); } lca.build(); re.build(); map<pair<int, int>, int> mp; REP (u, N) { REP (i, len(G[u])) { auto v = G[u][i].first; mp[{u, v}] = i; } } REP (_, Q) { int S, T; input(S, T); S--; T--; int d = lca.distance_e(S, T); int ans = 0; if (d % 2 == 0) { if (lca.depth[S] >= lca.depth[T]) { swap(S, T); } int C = lca.la(T, d / 2); ans = N; int t = lca.la(T, d / 2 - 1); int i = mp[{C, t}]; ans -= re.dp[C][i]; int U = lca.query(S, T); if (U == S) { int t = lca.la(C, 1); int i = mp[{C, t}]; ans -= re.dp[C][i]; } else if (U == C) { int t = lca.la(S, d / 2 - 1); int i = mp[{C, t}]; ans -= re.dp[C][i]; } else { int t = lca.parent[0][C]; int i = mp[{C, t}]; ans -= re.dp[C][i]; } } print(ans); } return 0; }