結果
| 問題 |
No.2337 Equidistant
|
| コンテスト | |
| ユーザー |
jabee
|
| 提出日時 | 2023-06-02 22:43:56 |
| 言語 | C++17 (gcc 13.3.0 + boost 1.87.0) |
| 結果 |
WA
|
| 実行時間 | - |
| コード長 | 8,455 bytes |
| コンパイル時間 | 4,760 ms |
| コンパイル使用メモリ | 271,784 KB |
| 最終ジャッジ日時 | 2025-02-13 19:42:43 |
|
ジャッジサーバーID (参考情報) |
judge3 / judge1 |
(要ログイン)
| ファイルパターン | 結果 |
|---|---|
| sample | AC * 1 |
| other | AC * 5 WA * 23 |
ソースコード
#include<bits/stdc++.h>
#include <math.h>
#include <algorithm>
#include <iostream>
#include <vector>
#include <atcoder/all>
#include <atcoder/dsu>
#include <atcoder/segtree>
#include <atcoder/lazysegtree>
#include <atcoder/modint>
#include <atcoder/scc>
#include <chrono>
#include <random>
#include <cassert>
#ifndef templete
#define rep(i,a,b) for(int i=a;i<b;i++)
#define rrep(i,a,b) for(int i=a;i>=b;i--)
#define fore(i,a) for(auto &i:a)
#define all(x) (x).begin(),(x).end()
//#include<boost/multiprecision/cpp_int.hpp>
//using namespace boost::multiprecision;
using namespace std;
using namespace atcoder;
//using atmint = modint998244353;
using atmint = modint;
using Graph = vector<vector<int>>;
using P = pair<long long,long long>;
//#pragma GCC optimize ("-O3")
using namespace std; void _main(); int main() { cin.tie(0); ios::sync_with_stdio(false); _main(); }
typedef long long ll; const int inf = INT_MAX / 2; const ll infl = 1LL << 60;
template<class T>bool chmax(T& a, const T& b) { if (a < b) { a = b; return 1; } return 0; }
template<class T>bool chmin(T& a, const T& b) { if (b < a) { a = b; return 1; } return 0; }
//---------------------------------------------------------------------------------------------------
template<int MOD> struct ModInt {
static const int Mod = MOD; unsigned x; ModInt() : x(0) { }
ModInt(signed sig) { x = sig < 0 ? sig % MOD + MOD : sig % MOD; }
ModInt(signed long long sig) { x = sig < 0 ? sig % MOD + MOD : sig % MOD; }
int get() const { return (int)x; }
ModInt &operator+=(ModInt that) { if ((x += that.x) >= MOD) x -= MOD; return *this; }
ModInt &operator-=(ModInt that) { if ((x += MOD - that.x) >= MOD) x -= MOD; return *this; }
ModInt &operator*=(ModInt that) { x = (unsigned long long)x * that.x % MOD; return *this; }
ModInt &operator/=(ModInt that) { return *this *= that.inverse(); }
ModInt operator+(ModInt that) const { return ModInt(*this) += that; }
ModInt operator-(ModInt that) const { return ModInt(*this) -= that; }
ModInt operator*(ModInt that) const { return ModInt(*this) *= that; }
ModInt operator/(ModInt that) const { return ModInt(*this) /= that; }
ModInt inverse() const { long long a = x, b = MOD, u = 1, v = 0;
while (b) { long long t = a / b; a -= t * b; std::swap(a, b); u -= t * v; std::swap(u, v); }
return ModInt(u); }
bool operator==(ModInt that) const { return x == that.x; }
bool operator!=(ModInt that) const { return x != that.x; }
ModInt operator-() const { ModInt t; t.x = x == 0 ? 0 : Mod - x; return t; }
};
template<int MOD> ostream& operator<<(ostream& st, const ModInt<MOD> a) { st << a.get(); return st; };
template<int MOD> ModInt<MOD> operator^(ModInt<MOD> a, unsigned long long k) {
ModInt<MOD> r = 1; while (k) { if (k & 1) r *= a; a *= a; k >>= 1; } return r; }
template<typename T, int FAC_MAX> struct Comb { vector<T> fac, ifac;
Comb(){fac.resize(FAC_MAX,1);ifac.resize(FAC_MAX,1);rep(i,1,FAC_MAX)fac[i]=fac[i-1]*i;
ifac[FAC_MAX-1]=T(1)/fac[FAC_MAX-1];rrep(i,FAC_MAX-2,1)ifac[i]=ifac[i+1]*T(i+1);}
T aPb(int a, int b) { if (b < 0 || a < b) return T(0); return fac[a] * ifac[a - b]; }
T aCb(int a, int b) { if (b < 0 || a < b) return T(0); return fac[a] * ifac[a - b] * ifac[b]; }
T nHk(int n, int k) { if (n == 0 && k == 0) return T(1); if (n <= 0 || k < 0) return 0;
return aCb(n + k - 1, k); } // nHk = (n+k-1)Ck : n is separator
T pairCombination(int n) {if(n%2==1)return T(0);return fac[n]*ifac[n/2]/(T(2)^(n/2));}
// combination of paris for n com.aCb(h+w-2,h-1);
};
//typedef ModInt<1000000007> mint;
typedef ModInt<998244353> mint;
//typedef ModInt<1000000000> mint;
Comb<mint, 2010101> com;
//vector dp(n+1,vector(n+1,vector<ll>(n+1,0)));
//vector dp(n+1,vector<ll>(n+1,0));
std::random_device seed_gen;
std::mt19937 engine(seed_gen());
string ye = "Yes"; string no = "No"; string draw = "Draw";
#endif // templete
//---------------------------------------------------------------------------------------------------
struct LCA {
vector<vector<int>> parent; // parent[k][u]:= u の 2^k 先の親
vector<vector<ll>> max_w; // max_w[k][u]:= u の 2^k 先までの辺をたどった時の最大の重み
vector<int> dist; // root からの距離
vector<int> child_cnt; // child
LCA(const Graph &G, map<P,ll> & cost,int root = 0) { init(G, cost, root); }
// 初期化
void init(const Graph &G, map<P,ll> & cost, int root = 0) {
int V = G.size();
int K = 1;
while ((1 << K) < V) K++;
parent.assign(K, vector<int>(V, -1));
max_w.assign(K, vector<ll>(V, -infl));
dist.assign(V, -1);
child_cnt.assign(V, 0);
dfs(G, cost, root, -1, 0);
for (int k = 0; k + 1 < K; k++) {
for (int v = 0; v < V; v++) {
if (parent[k][v] < 0) {
parent[k + 1][v] = -1;
} else {
parent[k + 1][v] = parent[k][parent[k][v]];
max_w[k + 1][v] = max(max_w[k][v],max_w[k][parent[k][v]]);
}
}
}
}
// 根からの距離と1つ先の頂点を求める
int dfs(const Graph &G, map<P,ll> & cost, int v, int p, int d) {
int cnt = 0;
parent[0][v] = p;
if(p == -1) max_w[0][v] = -infl;
else max_w[0][v] = cost[{v,p}];
dist[v] = d;
for (auto e : G[v]) {
if (e != p) cnt += dfs(G, cost, e, v, d + 1);
}
child_cnt[v] = cnt + 1;
return child_cnt[v];
}
int query(int u, int v) {
if (dist[u] < dist[v]) swap(u, v); // u の方が深いとする
int K = parent.size();
// LCA までの距離を同じにする
for (int k = 0; k < K; k++) {
if ((dist[u] - dist[v]) >> k & 1) {
u = parent[k][u];
}
}
// 二分探索で LCA を求める
if (u == v) return u;
for (int k = K - 1; k >= 0; k--) {
if (parent[k][u] != parent[k][v]) {
u = parent[k][u];
v = parent[k][v];
}
}
return parent[0][u];
}
int query2(int u, int dep) {
int K = parent.size();
for (int k = 0; k < K; k++) {
if (dep >> k & 1) {
u = parent[k][u];
}
}
return u;
}
// u,vとlca(u,v)間を結ぶ辺のうち、最大の重みの辺を求める
ll query_max_w(int u, int v) {
ll res = 0;
if (dist[u] < dist[v]) swap(u, v); // u の方が深いとする
int K = parent.size();
// LCA までの距離を同じにする
for (int k = 0; k < K; k++) {
if ((dist[u] - dist[v]) >> k & 1) {
chmax(res,max_w[k][u]);
u = parent[k][u];
}
}
// 二分探索で LCA を求める
if (u == v) return res;
for (int k = K - 1; k >= 0; k--) {
if (parent[k][u] != parent[k][v]) {
chmax(res,max_w[k][u]);
chmax(res,max_w[k][v]);
u = parent[k][u];
v = parent[k][v];
}
}
chmax(res,max_w[0][u]);
chmax(res,max_w[0][v]);
return res;
}
int get_dist(int u, int v) { return dist[u] + dist[v] - 2 * dist[query(u, v)]; }
int query3(int s, int t){
//cout << dist[s] << " " << dist[t] << endl;
ll dis = get_dist(s,t);
if(dis % 2 == 1){
return 0;
}else{
if(dist[s] < dist[t])swap(s,t);
ll l = query(s,t);
if(l == s || l == t){
ll dep_s = query2(s,dis/2);
ll dep_c = query2(s,dis/2 - 1);
return child_cnt[dep_s] - child_cnt[dep_c];
}else{
ll dep_s = query2(s,dist[s] - dist[l] - 1);
ll dep_c = query2(t,dist[t] - dist[l] - 1);
return child_cnt[0] - child_cnt[dep_s] - child_cnt[dep_c];
}
}
}
bool is_on_path(int u, int v, int a) { return get_dist(u, a) + get_dist(a, v) == get_dist(u, v); }
};
void _main() {
ll n,q;
cin >> n >> q;
Graph g(n);
rep(i,0,n-1){
ll a,b;
cin >> a >> b;
a--; b--;
g[a].push_back(b);
g[b].push_back(a);
}
map<P,ll>mp;
LCA lca(g,mp,0);
rep(qi,0,q){
ll s,t;
cin >> s >> t;
s--; t--;
cout << lca.query3(s,t) << endl;
}
}
jabee