結果
問題 | No.2342 Triple Tree Query (Hard) |
ユーザー | maspy |
提出日時 | 2023-06-02 22:48:13 |
言語 | C++23 (gcc 12.3.0 + boost 1.83.0) |
結果 |
AC
|
実行時間 | 3,667 ms / 10,000 ms |
コード長 | 35,403 bytes |
コンパイル時間 | 6,798 ms |
コンパイル使用メモリ | 349,156 KB |
実行使用メモリ | 32,108 KB |
最終ジャッジ日時 | 2024-06-09 00:35:42 |
合計ジャッジ時間 | 76,987 ms |
ジャッジサーバーID (参考情報) |
judge3 / judge4 |
(要ログイン)
テストケース
テストケース表示入力 | 結果 | 実行時間 実行使用メモリ |
---|---|---|
testcase_00 | AC | 2 ms
5,248 KB |
testcase_01 | AC | 3 ms
5,248 KB |
testcase_02 | AC | 17 ms
5,248 KB |
testcase_03 | AC | 20 ms
5,376 KB |
testcase_04 | AC | 16 ms
5,376 KB |
testcase_05 | AC | 16 ms
5,376 KB |
testcase_06 | AC | 19 ms
5,376 KB |
testcase_07 | AC | 2,992 ms
24,304 KB |
testcase_08 | AC | 3,069 ms
24,304 KB |
testcase_09 | AC | 3,069 ms
24,556 KB |
testcase_10 | AC | 2,938 ms
24,492 KB |
testcase_11 | AC | 3,214 ms
24,476 KB |
testcase_12 | AC | 3,023 ms
24,676 KB |
testcase_13 | AC | 2,899 ms
24,536 KB |
testcase_14 | AC | 2,902 ms
24,304 KB |
testcase_15 | AC | 2,903 ms
24,564 KB |
testcase_16 | AC | 3,009 ms
24,552 KB |
testcase_17 | AC | 384 ms
29,792 KB |
testcase_18 | AC | 369 ms
32,108 KB |
testcase_19 | AC | 377 ms
29,932 KB |
testcase_20 | AC | 373 ms
31,168 KB |
testcase_21 | AC | 385 ms
31,988 KB |
testcase_22 | AC | 977 ms
24,556 KB |
testcase_23 | AC | 814 ms
24,556 KB |
testcase_24 | AC | 917 ms
24,560 KB |
testcase_25 | AC | 1,877 ms
24,792 KB |
testcase_26 | AC | 1,833 ms
24,768 KB |
testcase_27 | AC | 1,782 ms
24,552 KB |
testcase_28 | AC | 1,802 ms
24,612 KB |
testcase_29 | AC | 1,927 ms
24,560 KB |
testcase_30 | AC | 1,082 ms
24,556 KB |
testcase_31 | AC | 1,293 ms
24,564 KB |
testcase_32 | AC | 1,126 ms
24,512 KB |
testcase_33 | AC | 3,423 ms
24,576 KB |
testcase_34 | AC | 3,374 ms
24,564 KB |
testcase_35 | AC | 3,384 ms
24,516 KB |
testcase_36 | AC | 3,667 ms
24,320 KB |
testcase_37 | AC | 3,242 ms
24,548 KB |
コンパイルメッセージ
main.cpp: In function 'void solve()': main.cpp:182:21: warning: narrowing conversion of 'v' from 'll' {aka 'long long int'} to 'int' [-Wnarrowing] 182 | return (a > b ? a = b, 1 : 0); | ^ main.cpp:182:21: warning: narrowing conversion of 'v' from 'll' {aka 'long long int'} to 'int' [-Wnarrowing]
ソースコード
#line 1 "/home/maspy/compro/library/my_template.hpp" #if defined(LOCAL) #include <my_template_compiled.hpp> #else #pragma GCC optimize("Ofast") #pragma GCC optimize("unroll-loops") #include <bits/stdc++.h> using namespace std; using ll = long long; using u32 = unsigned int; using u64 = unsigned long long; using i128 = __int128; template <class T> constexpr T infty = 0; template <> constexpr int infty<int> = 1'000'000'000; template <> constexpr ll infty<ll> = ll(infty<int>) * infty<int> * 2; template <> constexpr u32 infty<u32> = infty<int>; template <> constexpr u64 infty<u64> = infty<ll>; template <> constexpr i128 infty<i128> = i128(infty<ll>) * infty<ll>; template <> constexpr double infty<double> = infty<ll>; template <> constexpr long double infty<long double> = infty<ll>; using pi = pair<ll, ll>; using vi = vector<ll>; template <class T> using vc = vector<T>; template <class T> using vvc = vector<vc<T>>; template <class T> using vvvc = vector<vvc<T>>; template <class T> using vvvvc = vector<vvvc<T>>; template <class T> using vvvvvc = vector<vvvvc<T>>; template <class T> using pq = priority_queue<T>; template <class T> using pqg = priority_queue<T, vector<T>, greater<T>>; #define vv(type, name, h, ...) \ vector<vector<type>> name(h, vector<type>(__VA_ARGS__)) #define vvv(type, name, h, w, ...) \ vector<vector<vector<type>>> name( \ h, vector<vector<type>>(w, vector<type>(__VA_ARGS__))) #define vvvv(type, name, a, b, c, ...) \ vector<vector<vector<vector<type>>>> name( \ a, vector<vector<vector<type>>>( \ b, vector<vector<type>>(c, vector<type>(__VA_ARGS__)))) // https://trap.jp/post/1224/ #define FOR1(a) for (ll _ = 0; _ < ll(a); ++_) #define FOR2(i, a) for (ll i = 0; i < ll(a); ++i) #define FOR3(i, a, b) for (ll i = a; i < ll(b); ++i) #define FOR4(i, a, b, c) for (ll i = a; i < ll(b); i += (c)) #define FOR1_R(a) for (ll i = (a)-1; i >= ll(0); --i) #define FOR2_R(i, a) for (ll i = (a)-1; i >= ll(0); --i) #define FOR3_R(i, a, b) for (ll i = (b)-1; i >= ll(a); --i) #define overload4(a, b, c, d, e, ...) e #define overload3(a, b, c, d, ...) d #define FOR(...) overload4(__VA_ARGS__, FOR4, FOR3, FOR2, FOR1)(__VA_ARGS__) #define FOR_R(...) overload3(__VA_ARGS__, FOR3_R, FOR2_R, FOR1_R)(__VA_ARGS__) #define FOR_subset(t, s) \ for (ll t = (s); t >= 0; t = (t == 0 ? -1 : (t - 1) & (s))) #define all(x) x.begin(), x.end() #define len(x) ll(x.size()) #define elif else if #define eb emplace_back #define mp make_pair #define mt make_tuple #define fi first #define se second #define stoi stoll int popcnt(int x) { return __builtin_popcount(x); } int popcnt(u32 x) { return __builtin_popcount(x); } int popcnt(ll x) { return __builtin_popcountll(x); } int popcnt(u64 x) { return __builtin_popcountll(x); } // (0, 1, 2, 3, 4) -> (-1, 0, 1, 1, 2) int topbit(int x) { return (x == 0 ? -1 : 31 - __builtin_clz(x)); } int topbit(u32 x) { return (x == 0 ? -1 : 31 - __builtin_clz(x)); } int topbit(ll x) { return (x == 0 ? -1 : 63 - __builtin_clzll(x)); } int topbit(u64 x) { return (x == 0 ? -1 : 63 - __builtin_clzll(x)); } // (0, 1, 2, 3, 4) -> (-1, 0, 1, 0, 2) int lowbit(int x) { return (x == 0 ? -1 : __builtin_ctz(x)); } int lowbit(u32 x) { return (x == 0 ? -1 : __builtin_ctz(x)); } int lowbit(ll x) { return (x == 0 ? -1 : __builtin_ctzll(x)); } int lowbit(u64 x) { return (x == 0 ? -1 : __builtin_ctzll(x)); } template <typename T, typename U> T ceil(T x, U y) { return (x > 0 ? (x + y - 1) / y : x / y); } template <typename T, typename U> T floor(T x, U y) { return (x > 0 ? x / y : (x - y + 1) / y); } template <typename T, typename U> pair<T, T> divmod(T x, U y) { T q = floor(x, y); return {q, x - q * y}; } template <typename T, typename U> T SUM(const vector<U> &A) { T sum = 0; for (auto &&a: A) sum += a; return sum; } #define MIN(v) *min_element(all(v)) #define MAX(v) *max_element(all(v)) #define LB(c, x) distance((c).begin(), lower_bound(all(c), (x))) #define UB(c, x) distance((c).begin(), upper_bound(all(c), (x))) #define UNIQUE(x) \ sort(all(x)), x.erase(unique(all(x)), x.end()), x.shrink_to_fit() template <typename T> T POP(deque<T> &que) { T a = que.front(); que.pop_front(); return a; } template <typename T> T POP(pq<T> &que) { T a = que.top(); que.pop(); return a; } template <typename T> T POP(pqg<T> &que) { assert(!que.empty()); T a = que.top(); que.pop(); return a; } template <typename T> T POP(vc<T> &que) { assert(!que.empty()); T a = que.back(); que.pop_back(); return a; } template <typename F> ll binary_search(F check, ll ok, ll ng, bool check_ok = true) { if (check_ok) assert(check(ok)); while (abs(ok - ng) > 1) { auto x = (ng + ok) / 2; tie(ok, ng) = (check(x) ? mp(x, ng) : mp(ok, x)); } return ok; } template <typename F> double binary_search_real(F check, double ok, double ng, int iter = 100) { FOR(iter) { double x = (ok + ng) / 2; tie(ok, ng) = (check(x) ? mp(x, ng) : mp(ok, x)); } return (ok + ng) / 2; } template <class T, class S> inline bool chmax(T &a, const S &b) { return (a < b ? a = b, 1 : 0); } template <class T, class S> inline bool chmin(T &a, const S &b) { return (a > b ? a = b, 1 : 0); } // ? は -1 vc<int> s_to_vi(const string &S, char first_char) { vc<int> A(S.size()); FOR(i, S.size()) { A[i] = (S[i] != '?' ? S[i] - first_char : -1); } return A; } template <typename T, typename U> vector<T> cumsum(vector<U> &A, int off = 1) { int N = A.size(); vector<T> B(N + 1); FOR(i, N) { B[i + 1] = B[i] + A[i]; } if (off == 0) B.erase(B.begin()); return B; } // stable sort template <typename T> vector<int> argsort(const vector<T> &A) { vector<int> ids(len(A)); iota(all(ids), 0); sort(all(ids), [&](int i, int j) { return (A[i] == A[j] ? i < j : A[i] < A[j]); }); return ids; } // A[I[0]], A[I[1]], ... template <typename T> vc<T> rearrange(const vc<T> &A, const vc<int> &I) { vc<T> B(len(I)); FOR(i, len(I)) B[i] = A[I[i]]; return B; } #endif #line 1 "/home/maspy/compro/library/other/io.hpp" // based on yosupo's fastio #include <unistd.h> namespace fastio { #define FASTIO // クラスが read(), print() を持っているかを判定するメタ関数 struct has_write_impl { template <class T> static auto check(T &&x) -> decltype(x.write(), std::true_type{}); template <class T> static auto check(...) -> std::false_type; }; template <class T> class has_write : public decltype(has_write_impl::check<T>(std::declval<T>())) { }; struct has_read_impl { template <class T> static auto check(T &&x) -> decltype(x.read(), std::true_type{}); template <class T> static auto check(...) -> std::false_type; }; template <class T> class has_read : public decltype(has_read_impl::check<T>(std::declval<T>())) {}; struct Scanner { FILE *fp; char line[(1 << 15) + 1]; size_t st = 0, ed = 0; void reread() { memmove(line, line + st, ed - st); ed -= st; st = 0; ed += fread(line + ed, 1, (1 << 15) - ed, fp); line[ed] = '\0'; } bool succ() { while (true) { if (st == ed) { reread(); if (st == ed) return false; } while (st != ed && isspace(line[st])) st++; if (st != ed) break; } if (ed - st <= 50) { bool sep = false; for (size_t i = st; i < ed; i++) { if (isspace(line[i])) { sep = true; break; } } if (!sep) reread(); } return true; } template <class T, enable_if_t<is_same<T, string>::value, int> = 0> bool read_single(T &ref) { if (!succ()) return false; while (true) { size_t sz = 0; while (st + sz < ed && !isspace(line[st + sz])) sz++; ref.append(line + st, sz); st += sz; if (!sz || st != ed) break; reread(); } return true; } template <class T, enable_if_t<is_integral<T>::value, int> = 0> bool read_single(T &ref) { if (!succ()) return false; bool neg = false; if (line[st] == '-') { neg = true; st++; } ref = T(0); while (isdigit(line[st])) { ref = 10 * ref + (line[st++] & 0xf); } if (neg) ref = -ref; return true; } template <typename T, typename enable_if<has_read<T>::value>::type * = nullptr> inline bool read_single(T &x) { x.read(); return true; } bool read_single(double &ref) { string s; if (!read_single(s)) return false; ref = std::stod(s); return true; } bool read_single(char &ref) { string s; if (!read_single(s) || s.size() != 1) return false; ref = s[0]; return true; } template <class T> bool read_single(vector<T> &ref) { for (auto &d: ref) { if (!read_single(d)) return false; } return true; } template <class T, class U> bool read_single(pair<T, U> &p) { return (read_single(p.first) && read_single(p.second)); } template <size_t N = 0, typename T> void read_single_tuple(T &t) { if constexpr (N < std::tuple_size<T>::value) { auto &x = std::get<N>(t); read_single(x); read_single_tuple<N + 1>(t); } } template <class... T> bool read_single(tuple<T...> &tpl) { read_single_tuple(tpl); return true; } void read() {} template <class H, class... T> void read(H &h, T &... t) { bool f = read_single(h); assert(f); read(t...); } Scanner(FILE *fp) : fp(fp) {} }; struct Printer { Printer(FILE *_fp) : fp(_fp) {} ~Printer() { flush(); } static constexpr size_t SIZE = 1 << 15; FILE *fp; char line[SIZE], small[50]; size_t pos = 0; void flush() { fwrite(line, 1, pos, fp); pos = 0; } void write(const char val) { if (pos == SIZE) flush(); line[pos++] = val; } template <class T, enable_if_t<is_integral<T>::value, int> = 0> void write(T val) { if (pos > (1 << 15) - 50) flush(); if (val == 0) { write('0'); return; } if (val < 0) { write('-'); val = -val; // todo min } size_t len = 0; while (val) { small[len++] = char(0x30 | (val % 10)); val /= 10; } for (size_t i = 0; i < len; i++) { line[pos + i] = small[len - 1 - i]; } pos += len; } void write(const string s) { for (char c: s) write(c); } void write(const char *s) { size_t len = strlen(s); for (size_t i = 0; i < len; i++) write(s[i]); } void write(const double x) { ostringstream oss; oss << fixed << setprecision(15) << x; string s = oss.str(); write(s); } void write(const long double x) { ostringstream oss; oss << fixed << setprecision(15) << x; string s = oss.str(); write(s); } template <typename T, typename enable_if<has_write<T>::value>::type * = nullptr> inline void write(T x) { x.write(); } template <class T> void write(const vector<T> val) { auto n = val.size(); for (size_t i = 0; i < n; i++) { if (i) write(' '); write(val[i]); } } template <class T, class U> void write(const pair<T, U> val) { write(val.first); write(' '); write(val.second); } template <size_t N = 0, typename T> void write_tuple(const T t) { if constexpr (N < std::tuple_size<T>::value) { if constexpr (N > 0) { write(' '); } const auto x = std::get<N>(t); write(x); write_tuple<N + 1>(t); } } template <class... T> bool write(tuple<T...> tpl) { write_tuple(tpl); return true; } template <class T, size_t S> void write(const array<T, S> val) { auto n = val.size(); for (size_t i = 0; i < n; i++) { if (i) write(' '); write(val[i]); } } void write(i128 val) { string s; bool negative = 0; if (val < 0) { negative = 1; val = -val; } while (val) { s += '0' + int(val % 10); val /= 10; } if (negative) s += "-"; reverse(all(s)); if (len(s) == 0) s = "0"; write(s); } }; Scanner scanner = Scanner(stdin); Printer printer = Printer(stdout); void flush() { printer.flush(); } void print() { printer.write('\n'); } template <class Head, class... Tail> void print(Head &&head, Tail &&... tail) { printer.write(head); if (sizeof...(Tail)) printer.write(' '); print(forward<Tail>(tail)...); } void read() {} template <class Head, class... Tail> void read(Head &head, Tail &... tail) { scanner.read(head); read(tail...); } } // namespace fastio using fastio::print; using fastio::flush; using fastio::read; #define INT(...) \ int __VA_ARGS__; \ read(__VA_ARGS__) #define LL(...) \ ll __VA_ARGS__; \ read(__VA_ARGS__) #define STR(...) \ string __VA_ARGS__; \ read(__VA_ARGS__) #define CHAR(...) \ char __VA_ARGS__; \ read(__VA_ARGS__) #define DBL(...) \ double __VA_ARGS__; \ read(__VA_ARGS__) #define VEC(type, name, size) \ vector<type> name(size); \ read(name) #define VV(type, name, h, w) \ vector<vector<type>> name(h, vector<type>(w)); \ read(name) void YES(bool t = 1) { print(t ? "YES" : "NO"); } void NO(bool t = 1) { YES(!t); } void Yes(bool t = 1) { print(t ? "Yes" : "No"); } void No(bool t = 1) { Yes(!t); } void yes(bool t = 1) { print(t ? "yes" : "no"); } void no(bool t = 1) { yes(!t); } #line 3 "main.cpp" #line 2 "/home/maspy/compro/library/alg/monoid/add.hpp" template <typename X> struct Monoid_Add { using value_type = X; static constexpr X op(const X &x, const X &y) noexcept { return x + y; } static constexpr X inverse(const X &x) noexcept { return -x; } static constexpr X power(const X &x, ll n) noexcept { return X(n) * x; } static constexpr X unit() { return X(0); } static constexpr bool commute = true; }; #line 2 "/home/maspy/compro/library/alg/monoid/affine.hpp" template <typename K> struct Monoid_Affine { using F = pair<K, K>; using value_type = F; static constexpr F op(const F &x, const F &y) noexcept { return F({x.first * y.first, x.second * y.first + y.second}); } static constexpr F inverse(const F &x) { auto [a, b] = x; a = K(1) / a; return {a, a * (-b)}; } static constexpr K eval(const F &f, K x) noexcept { return f.first * x + f.second; } static constexpr F unit() { return {K(1), K(0)}; } static constexpr bool commute = false; }; #line 3 "/home/maspy/compro/library/alg/acted_monoid/sum_affine.hpp" template <typename E> struct ActedMonoid_Sum_Affine { using Monoid_X = Monoid_Add<E>; using Monoid_A = Monoid_Affine<E>; using X = typename Monoid_X::value_type; using A = typename Monoid_A::value_type; static constexpr X act(const X &x, const A &a, const ll &size) { return x * a.fi + E(size) * a.se; } }; #line 2 "/home/maspy/compro/library/mod/modint_common.hpp" struct has_mod_impl { template <class T> static auto check(T &&x) -> decltype(x.get_mod(), std::true_type{}); template <class T> static auto check(...) -> std::false_type; }; template <class T> class has_mod : public decltype(has_mod_impl::check<T>(std::declval<T>())) {}; template <typename mint> mint inv(int n) { static const int mod = mint::get_mod(); static vector<mint> dat = {0, 1}; assert(0 <= n); if (n >= mod) n %= mod; while (len(dat) <= n) { int k = len(dat); int q = (mod + k - 1) / k; dat.eb(dat[k * q - mod] * mint(q)); } return dat[n]; } template <typename mint> mint fact(int n) { static const int mod = mint::get_mod(); assert(0 <= n); if (n >= mod) return 0; static vector<mint> dat = {1, 1}; while (len(dat) <= n) dat.eb(dat[len(dat) - 1] * mint(len(dat))); return dat[n]; } template <typename mint> mint fact_inv(int n) { static const int mod = mint::get_mod(); assert(-1 <= n && n < mod); static vector<mint> dat = {1, 1}; if (n == -1) return mint(0); while (len(dat) <= n) dat.eb(dat[len(dat) - 1] * inv<mint>(len(dat))); return dat[n]; } template <class mint, class... Ts> mint fact_invs(Ts... xs) { return (mint(1) * ... * fact_inv<mint>(xs)); } template <typename mint, class Head, class... Tail> mint multinomial(Head &&head, Tail &&... tail) { return fact<mint>(head) * fact_invs<mint>(std::forward<Tail>(tail)...); } template <typename mint> mint C_dense(int n, int k) { static vvc<mint> C; static int H = 0, W = 0; auto calc = [&](int i, int j) -> mint { if (i == 0) return (j == 0 ? mint(1) : mint(0)); return C[i - 1][j] + (j ? C[i - 1][j - 1] : 0); }; if (W <= k) { FOR(i, H) { C[i].resize(k + 1); FOR(j, W, k + 1) { C[i][j] = calc(i, j); } } W = k + 1; } if (H <= n) { C.resize(n + 1); FOR(i, H, n + 1) { C[i].resize(W); FOR(j, W) { C[i][j] = calc(i, j); } } H = n + 1; } return C[n][k]; } template <typename mint, bool large = false, bool dense = false> mint C(ll n, ll k) { assert(n >= 0); if (k < 0 || n < k) return 0; if (dense) return C_dense<mint>(n, k); if (!large) return multinomial<mint>(n, k, n - k); k = min(k, n - k); mint x(1); FOR(i, k) x *= mint(n - i); return x * fact_inv<mint>(k); } template <typename mint, bool large = false> mint C_inv(ll n, ll k) { assert(n >= 0); assert(0 <= k && k <= n); if (!large) return fact_inv<mint>(n) * fact<mint>(k) * fact<mint>(n - k); return mint(1) / C<mint, 1>(n, k); } // [x^d] (1-x) ^ {-n} の計算 template <typename mint, bool large = false, bool dense = false> mint C_negative(ll n, ll d) { assert(n >= 0); if (d < 0) return mint(0); if (n == 0) { return (d == 0 ? mint(1) : mint(0)); } return C<mint, large, dense>(n + d - 1, d); } #line 3 "/home/maspy/compro/library/mod/modint.hpp" template <int mod> struct modint { static_assert(mod < (1 << 30)); int val; constexpr modint(const ll val = 0) noexcept : val(val >= 0 ? val % mod : (mod - (-val) % mod) % mod) {} bool operator<(const modint &other) const { return val < other.val; } // To use std::map modint &operator+=(const modint &p) { if ((val += p.val) >= mod) val -= mod; return *this; } modint &operator-=(const modint &p) { if ((val += mod - p.val) >= mod) val -= mod; return *this; } modint &operator*=(const modint &p) { val = (int)(1LL * val * p.val % mod); return *this; } modint &operator/=(const modint &p) { *this *= p.inverse(); return *this; } modint operator-() const { return modint(-val); } modint operator+(const modint &p) const { return modint(*this) += p; } modint operator-(const modint &p) const { return modint(*this) -= p; } modint operator*(const modint &p) const { return modint(*this) *= p; } modint operator/(const modint &p) const { return modint(*this) /= p; } bool operator==(const modint &p) const { return val == p.val; } bool operator!=(const modint &p) const { return val != p.val; } modint inverse() const { int a = val, b = mod, u = 1, v = 0, t; while (b > 0) { t = a / b; swap(a -= t * b, b), swap(u -= t * v, v); } return modint(u); } modint pow(ll n) const { assert(n >= 0); modint ret(1), mul(val); while (n > 0) { if (n & 1) ret *= mul; mul *= mul; n >>= 1; } return ret; } #ifdef FASTIO void write() { fastio::printer.write(val); } void read() { fastio::scanner.read(val); } #endif static constexpr int get_mod() { return mod; } // (n, r), r は 1 の 2^n 乗根 static constexpr pair<int, int> ntt_info() { if (mod == 167772161) return {25, 17}; if (mod == 469762049) return {26, 30}; if (mod == 754974721) return {24, 362}; if (mod == 880803841) return {23, 211}; if (mod == 998244353) return {23, 31}; if (mod == 1045430273) return {20, 363}; if (mod == 1051721729) return {20, 330}; if (mod == 1053818881) return {20, 2789}; return {-1, -1}; } static constexpr bool can_ntt() { return ntt_info().fi != -1; } }; using modint107 = modint<1000000007>; using modint998 = modint<998244353>; #line 2 "/home/maspy/compro/library/graph/tree.hpp" #line 2 "/home/maspy/compro/library/graph/base.hpp" template <typename T> struct Edge { int frm, to; T cost; int id; }; template <typename T = int, bool directed = false> struct Graph { int N, M; using cost_type = T; using edge_type = Edge<T>; vector<edge_type> edges; vector<int> indptr; vector<edge_type> csr_edges; vc<int> vc_deg, vc_indeg, vc_outdeg; bool prepared; class OutgoingEdges { public: OutgoingEdges(const Graph* G, int l, int r) : G(G), l(l), r(r) {} const edge_type* begin() const { if (l == r) { return 0; } return &G->csr_edges[l]; } const edge_type* end() const { if (l == r) { return 0; } return &G->csr_edges[r]; } private: const Graph* G; int l, r; }; bool is_prepared() { return prepared; } constexpr bool is_directed() { return directed; } Graph() : N(0), M(0), prepared(0) {} Graph(int N) : N(N), M(0), prepared(0) {} void build(int n) { N = n, M = 0; prepared = 0; edges.clear(); indptr.clear(); csr_edges.clear(); vc_deg.clear(); vc_indeg.clear(); vc_outdeg.clear(); } void add(int frm, int to, T cost = 1, int i = -1) { assert(!prepared); assert(0 <= frm && 0 <= to && to < N); if (i == -1) i = M; auto e = edge_type({frm, to, cost, i}); edges.eb(e); ++M; } // wt, off void read_tree(bool wt = false, int off = 1) { read_graph(N - 1, wt, off); } void read_graph(int M, bool wt = false, int off = 1) { for (int m = 0; m < M; ++m) { INT(a, b); a -= off, b -= off; if (!wt) { add(a, b); } else { T c; read(c); add(a, b, c); } } build(); } void build() { assert(!prepared); prepared = true; indptr.assign(N + 1, 0); for (auto&& e: edges) { indptr[e.frm + 1]++; if (!directed) indptr[e.to + 1]++; } for (int v = 0; v < N; ++v) { indptr[v + 1] += indptr[v]; } auto counter = indptr; csr_edges.resize(indptr.back() + 1); for (auto&& e: edges) { csr_edges[counter[e.frm]++] = e; if (!directed) csr_edges[counter[e.to]++] = edge_type({e.to, e.frm, e.cost, e.id}); } } OutgoingEdges operator[](int v) const { assert(prepared); return {this, indptr[v], indptr[v + 1]}; } vc<int> deg_array() { if (vc_deg.empty()) calc_deg(); return vc_deg; } pair<vc<int>, vc<int>> deg_array_inout() { if (vc_indeg.empty()) calc_deg_inout(); return {vc_indeg, vc_outdeg}; } int deg(int v) { if (vc_deg.empty()) calc_deg(); return vc_deg[v]; } int in_deg(int v) { if (vc_indeg.empty()) calc_deg_inout(); return vc_indeg[v]; } int out_deg(int v) { if (vc_outdeg.empty()) calc_deg_inout(); return vc_outdeg[v]; } void debug() { print("Graph"); if (!prepared) { print("frm to cost id"); for (auto&& e: edges) print(e.frm, e.to, e.cost, e.id); } else { print("indptr", indptr); print("frm to cost id"); FOR(v, N) for (auto&& e: (*this)[v]) print(e.frm, e.to, e.cost, e.id); } } vc<int> new_idx; vc<bool> used_e; // G における頂点 V[i] が、新しいグラフで i になるようにする // {G, es} pair<Graph<T, directed>, vc<int>> rearrange(vc<int> V) { if (len(new_idx) != N) new_idx.assign(N, -1); if (len(used_e) != M) used_e.assign(M, 0); int n = len(V); FOR(i, n) new_idx[V[i]] = i; Graph<T, directed> G(n); vc<int> es; FOR(i, n) { for (auto&& e: (*this)[V[i]]) { if (used_e[e.id]) continue; int a = e.frm, b = e.to; if (new_idx[a] != -1 && new_idx[b] != -1) { used_e[e.id] = 1; G.add(new_idx[a], new_idx[b], e.cost); es.eb(e.id); } } } FOR(i, n) new_idx[V[i]] = -1; for (auto&& eid: es) used_e[eid] = 0; G.build(); return {G, es}; } private: void calc_deg() { assert(vc_deg.empty()); vc_deg.resize(N); for (auto&& e: edges) vc_deg[e.frm]++, vc_deg[e.to]++; } void calc_deg_inout() { assert(vc_indeg.empty()); vc_indeg.resize(N); vc_outdeg.resize(N); for (auto&& e: edges) { vc_indeg[e.to]++, vc_outdeg[e.frm]++; } } }; #line 4 "/home/maspy/compro/library/graph/tree.hpp" // HLD euler tour をとっていろいろ。 // 木以外、非連結でも dfs 順序や親がとれる。 template <typename GT> struct Tree { using Graph_type = GT; GT &G; using WT = typename GT::cost_type; int N; vector<int> LID, RID, head, V, parent, VtoE; vc<int> depth; vc<WT> depth_weighted; Tree(GT &G, int r = 0, bool hld = 1) : G(G) { build(r, hld); } void build(int r = 0, bool hld = 1) { if (r == -1) return; // build を遅延したいとき N = G.N; LID.assign(N, -1), RID.assign(N, -1), head.assign(N, r); V.assign(N, -1), parent.assign(N, -1), VtoE.assign(N, -1); depth.assign(N, -1), depth_weighted.assign(N, 0); assert(G.is_prepared()); int t1 = 0; dfs_sz(r, -1, hld); dfs_hld(r, t1); } void dfs_sz(int v, int p, bool hld) { auto &sz = RID; parent[v] = p; depth[v] = (p == -1 ? 0 : depth[p] + 1); sz[v] = 1; int l = G.indptr[v], r = G.indptr[v + 1]; auto &csr = G.csr_edges; // 使う辺があれば先頭にする for (int i = r - 2; i >= l; --i) { if (hld && depth[csr[i + 1].to] == -1) swap(csr[i], csr[i + 1]); } int hld_sz = 0; for (int i = l; i < r; ++i) { auto e = csr[i]; if (depth[e.to] != -1) continue; depth_weighted[e.to] = depth_weighted[v] + e.cost; VtoE[e.to] = e.id; dfs_sz(e.to, v, hld); sz[v] += sz[e.to]; if (hld && chmax(hld_sz, sz[e.to]) && l < i) { swap(csr[l], csr[i]); } } } void dfs_hld(int v, int ×) { LID[v] = times++; RID[v] += LID[v]; V[LID[v]] = v; bool heavy = true; for (auto &&e: G[v]) { if (depth[e.to] <= depth[v]) continue; head[e.to] = (heavy ? head[v] : e.to); heavy = false; dfs_hld(e.to, times); } } vc<int> heavy_path_at(int v) { vc<int> P = {v}; while (1) { int a = P.back(); for (auto &&e: G[a]) { if (e.to != parent[a] && head[e.to] == v) { P.eb(e.to); break; } } if (P.back() == a) break; } return P; } int e_to_v(int eid) { auto e = G.edges[eid]; return (parent[e.frm] == e.to ? e.frm : e.to); } int v_to_e(int v) { return VtoE[v]; } int ELID(int v) { return 2 * LID[v] - depth[v]; } int ERID(int v) { return 2 * RID[v] - depth[v] - 1; } /* k: 0-indexed */ int LA(int v, int k) { assert(k <= depth[v]); while (1) { int u = head[v]; if (LID[v] - k >= LID[u]) return V[LID[v] - k]; k -= LID[v] - LID[u] + 1; v = parent[u]; } } int la(int u, int v) { return LA(u, v); } int LCA(int u, int v) { for (;; v = parent[head[v]]) { if (LID[u] > LID[v]) swap(u, v); if (head[u] == head[v]) return u; } } // root を根とした場合の lca int LCA_root(int u, int v, int root) { return LCA(u, v) ^ LCA(u, root) ^ LCA(v, root); } int lca(int u, int v) { return LCA(u, v); } int lca_root(int u, int v, int root) { return LCA_root(u, v, root); } int subtree_size(int v, int root = -1) { if (root == -1) return RID[v] - LID[v]; if (v == root) return N; int x = jump(v, root, 1); if (in_subtree(v, x)) return RID[v] - LID[v]; return N - RID[x] + LID[x]; } int dist(int a, int b) { int c = LCA(a, b); return depth[a] + depth[b] - 2 * depth[c]; } WT dist_weighted(int a, int b) { int c = LCA(a, b); return depth_weighted[a] + depth_weighted[b] - WT(2) * depth_weighted[c]; } // a is in b bool in_subtree(int a, int b) { return LID[b] <= LID[a] && LID[a] < RID[b]; } int jump(int a, int b, ll k) { if (k == 1) { if (a == b) return -1; return (in_subtree(b, a) ? LA(b, depth[b] - depth[a] - 1) : parent[a]); } int c = LCA(a, b); int d_ac = depth[a] - depth[c]; int d_bc = depth[b] - depth[c]; if (k > d_ac + d_bc) return -1; if (k <= d_ac) return LA(a, k); return LA(b, d_ac + d_bc - k); } vc<int> collect_child(int v) { vc<int> res; for (auto &&e: G[v]) if (e.to != parent[v]) res.eb(e.to); return res; } vc<pair<int, int>> get_path_decomposition(int u, int v, bool edge) { // [始点, 終点] の"閉"区間列。 vc<pair<int, int>> up, down; while (1) { if (head[u] == head[v]) break; if (LID[u] < LID[v]) { down.eb(LID[head[v]], LID[v]); v = parent[head[v]]; } else { up.eb(LID[u], LID[head[u]]); u = parent[head[u]]; } } if (LID[u] < LID[v]) down.eb(LID[u] + edge, LID[v]); elif (LID[v] + edge <= LID[u]) up.eb(LID[u], LID[v] + edge); reverse(all(down)); up.insert(up.end(), all(down)); return up; } vc<int> restore_path(int u, int v) { vc<int> P; for (auto &&[a, b]: get_path_decomposition(u, v, 0)) { if (a <= b) { FOR(i, a, b + 1) P.eb(V[i]); } else { FOR_R(i, b, a + 1) P.eb(V[i]); } } return P; } }; #line 7 "main.cpp" template <class ActedMonoid, typename XY> struct KDTree_ActedMonoid { using AM = ActedMonoid; using MX = typename AM::Monoid_X; using MA = typename AM::Monoid_A; using X = typename AM::X; using A = typename AM::A; static_assert(MX::commute); // 小数も考慮すると、閉で持つ設計方針になる。ただし、クエリはいつもの半開を使う vc<tuple<XY, XY, XY, XY>> closed_range; vc<X> dat; vc<A> lazy; vc<int> size; int n; KDTree_ActedMonoid(vc<XY> xs, vc<XY> ys, vc<X> vs) : n(len(xs)) { assert(n > 0); int log = 0; while ((1 << log) < n) ++log; dat.resize(1 << (log + 1)); lazy.assign(1 << log, MA::unit()); closed_range.resize(1 << (log + 1)); size.resize(1 << (log + 1)); build(1, xs, ys, vs); } void multiply(XY x, XY y, const X& v) { multiply_rec(1, x, y, v); } // [xl, xr) x [yl, yr) X prod(XY xl, XY xr, XY yl, XY yr) { assert(xl <= xr && yl <= yr); return prod_rec(1, xl, xr, yl, yr); } X prod_all() { return dat[1]; } // [xl, xr) x [yl, yr) void apply(XY xl, XY xr, XY yl, XY yr, A a) { assert(xl <= xr && yl <= yr); return apply_rec(1, xl, xr, yl, yr, a); } private: void build(int idx, vc<XY> xs, vc<XY> ys, vc<X> vs, bool divx = true) { int n = len(xs); size[idx] = n; auto& [xmin, xmax, ymin, ymax] = closed_range[idx]; xmin = ymin = infty<XY>; xmax = ymax = -infty<XY>; FOR(i, n) { auto x = xs[i], y = ys[i]; chmin(xmin, x), chmax(xmax, x), chmin(ymin, y), chmax(ymax, y); } if (xmin == xmax && ymin == ymax) { X x = MX::unit(); for (auto&& v: vs) x = MX::op(x, v); dat[idx] = x; return; } int m = n / 2; vc<int> I(n); iota(all(I), 0); if (divx) { nth_element(I.begin(), I.begin() + m, I.end(), [xs](int i, int j) { return xs[i] < xs[j]; }); } else { nth_element(I.begin(), I.begin() + m, I.end(), [ys](int i, int j) { return ys[i] < ys[j]; }); } xs = rearrange(xs, I), ys = rearrange(ys, I), vs = rearrange(vs, I); build(2 * idx + 0, {xs.begin(), xs.begin() + m}, {ys.begin(), ys.begin() + m}, {vs.begin(), vs.begin() + m}, !divx); build(2 * idx + 1, {xs.begin() + m, xs.end()}, {ys.begin() + m, ys.end()}, {vs.begin() + m, vs.end()}, !divx); dat[idx] = MX::op(dat[2 * idx + 0], dat[2 * idx + 1]); } inline bool is_leaf(int idx) { auto& [xmin, xmax, ymin, ymax] = closed_range[idx]; return xmin == xmax && ymin == ymax; } inline bool isin(XY x, XY y, int idx) { auto& [xmin, xmax, ymin, ymax] = closed_range[idx]; return (xmin <= x && x <= xmax && ymin <= y && y <= ymax); } void apply_at(int idx, A a) { dat[idx] = AM::act(dat[idx], a, size[idx]); if (!is_leaf(idx)) lazy[idx] = MA::op(lazy[idx], a); } void push(int idx) { if (lazy[idx] == MA::unit()) return; apply_at(2 * idx + 0, lazy[idx]), apply_at(2 * idx + 1, lazy[idx]); lazy[idx] = MA::unit(); } bool multiply_rec(int idx, XY x, XY y, X v) { if (!isin(x, y, idx)) return false; if (is_leaf(idx)) { dat[idx] = MX::op(dat[idx], v); size[idx] += 1; return true; } push(idx); bool done = 0; if (multiply_rec(2 * idx + 0, x, y, v)) done = 1; if (!done && multiply_rec(2 * idx + 1, x, y, v)) done = 1; if (done) { dat[idx] = MX::op(dat[2 * idx + 0], dat[2 * idx + 1]); size[idx] = size[2 * idx + 0] + size[2 * idx + 1]; } return done; } X prod_rec(int idx, XY x1, XY x2, XY y1, XY y2) { auto& [xmin, xmax, ymin, ymax] = closed_range[idx]; if (x2 <= xmin || xmax < x1) return MX::unit(); if (y2 <= ymin || ymax < y1) return MX::unit(); if (x1 <= xmin && xmax < x2 && y1 <= ymin && ymax < y2) { return dat[idx]; } push(idx); return MX::op(prod_rec(2 * idx + 0, x1, x2, y1, y2), prod_rec(2 * idx + 1, x1, x2, y1, y2)); } void apply_rec(int idx, XY x1, XY x2, XY y1, XY y2, A a) { auto& [xmin, xmax, ymin, ymax] = closed_range[idx]; if (x2 <= xmin || xmax < x1) return; if (y2 <= ymin || ymax < y1) return; if (x1 <= xmin && xmax < x2 && y1 <= ymin && ymax < y2) { return apply_at(idx, a); } push(idx); apply_rec(2 * idx + 0, x1, x2, y1, y2, a); apply_rec(2 * idx + 1, x1, x2, y1, y2, a); dat[idx] = MX::op(dat[2 * idx + 0], dat[2 * idx + 1]); } }; using mint = modint998; void solve() { LL(N, Q); Graph<int, 0> G(N); G.read_tree(); Tree<decltype(G)> tree(G); VEC(mint, A, N); vc<int> X(N), Y(N); FOR(v, N) { X[v] = tree.LID[v]; Y[v] = tree.depth[v]; } KDTree_ActedMonoid<ActedMonoid_Sum_Affine<mint>, int> KDT(X, Y, A); FOR(Q) { LL(t); if (t == 1) { LL(v); --v; print(KDT.prod(X[v], X[v] + 1, Y[v], Y[v] + 1)); } if (t == 2) { LL(v, K, C, D); --v; assert(K <= 10); pair<mint, mint> p = {C, D}; /* どの点からどの深さに足すか? 一番浅いところからのみ足されるようにする */ vc<int> vs = {v}; FOR(K) { int nxt = tree.parent[vs.back()]; if (nxt == -1) break; vs.eb(nxt); } int n = len(vs); // depth closed range vc<pair<int, int>> range(n); FOR(i, n) range[i] = {tree.depth[vs[i]], tree.depth[vs[i]] + K - i}; FOR(i, n) { auto [l, r] = range[i]; if (i + 1 < n) { auto [l1, r1] = range[i + 1]; chmax(l, r1 + 1); } int v = vs[i]; KDT.apply(tree.LID[v], tree.RID[v], l, r + 1, p); } } if (t == 3) { LL(v, C, D); --v; pair<mint, mint> p = {C, D}; KDT.apply(tree.LID[v], tree.RID[v], 0, infty<int>, p); } if (t == 4) { LL(u, v, C, D); --u, --v; pair<mint, mint> p = {C, D}; for (auto&& [a, b]: tree.get_path_decomposition(u, v, false)) { if (a > b) swap(a, b); ++b; KDT.apply(a, b, 0, infty<int>, p); } } } } signed main() { int T = 1; // INT(T); FOR(T) solve(); return 0; }