結果

問題 No.2340 Triple Tree Query (Easy)
ユーザー risujiroh
提出日時 2023-06-02 23:05:33
言語 C++23
(gcc 13.3.0 + boost 1.87.0)
結果
AC  
実行時間 321 ms / 5,000 ms
コード長 10,782 bytes
コンパイル時間 4,271 ms
コンパイル使用メモリ 296,564 KB
実行使用メモリ 26,672 KB
最終ジャッジ日時 2024-12-28 21:50:41
合計ジャッジ時間 15,820 ms
ジャッジサーバーID
(参考情報)
judge2 / judge1
このコードへのチャレンジ
(要ログイン)
ファイルパターン 結果
sample AC * 1
other AC * 36
権限があれば一括ダウンロードができます

ソースコード

diff #
プレゼンテーションモードにする

#if __INCLUDE_LEVEL__ == 0
#include <bits/stdc++.h>
using namespace std;
#undef assert
#define assert(expr) (expr) || (__builtin_unreachable(), 0)
#include __BASE_FILE__
#define ALL(f, r, ...) \
[&](auto&& _) { return f(begin(_), end(_), ##__VA_ARGS__); }(r)
namespace std::ranges::views {
namespace {
using Fp = atcoder::modint998244353;
Fp op(Fp x, Fp y) { return x + y; }
Fp e() { return 0; }
struct F {
Fp c;
Fp d;
};
Fp mapping(F f, Fp x) { return x * f.c + f.d; }
F composition(F g, F f) { return {f.c * g.c, f.d * g.c + g.d}; }
F id() { return {1, 0}; }
void solve() {
int n, q;
cin >> tie(n, q);
HldTree g(n);
for (int _ = n - 1; _--;) {
int u, v;
cin >> tie(u, v);
--u, --v;
g.add_edge({u, v, 1});
}
g.build(0);
vector<Fp> x(n);
cin >> x;
auto order = ALL(vector, iota(0, n));
sort(order, {}, [&](int v) { return pair(v ? g.in[g.pv[v]] : -1, g.in[v]); });
vector<int> rank(n);
for (int i : iota(0, n)) {
rank[order[i]] = i;
}
atcoder::lazy_segtree<Fp, op, e, F, mapping, composition, id> seg(n);
for (int v : iota(0, n)) {
seg.set(rank[v], x[v]);
}
while (q--) {
int tp;
cin >> tp;
if (tp == 1) {
int v;
cin >> v;
--v;
cout << seg.get(rank[v]) << '\n';
} else if (tp == 2) {
int v, k, c, d;
cin >> tie(v, k, c, d);
--v;
assert(k == 1);
if (v) {
seg.apply(rank[g.pv[v]], {c, d});
}
seg.apply(rank[v], {c, d});
if (int nc = g.adj[v].size() - (v != 0); nc) {
int u = g.order[g.in[v] + 1];
seg.apply(rank[u], rank[u] + nc, {c, d});
}
} else {
int v, c, d;
cin >> tie(v, c, d);
--v;
seg.apply(rank[v], {c, d});
if (1 < g.sub[v]) {
int u = g.order[g.in[v] + 1];
seg.apply(rank[u], rank[u] + (g.sub[v] - 1), {c, d});
}
}
}
}
} // namespace
} // namespace std::ranges::views
using views::solve;
int main() {
ios::sync_with_stdio(false);
cin.tie(nullptr);
solve();
}
#else // __INCLUDE_LEVEL__
#include <atcoder/lazysegtree>
#include <atcoder/modint>
struct Graph {
struct Edge {
int src, dst;
int64_t cost;
int other(int v) const {
__glibcxx_assert(v == src or v == dst);
return src ^ dst ^ v;
}
};
std::vector<Edge> edges;
std::vector<std::vector<std::pair<int, int>>> adj;
Graph() {}
explicit Graph(int n) : adj(n) {}
int n() const { return std::size(adj); }
int m() const { return std::size(edges); }
int add_edge(const Edge& e, bool directed) {
__glibcxx_assert(0 <= e.src and e.src < n());
__glibcxx_assert(0 <= e.dst and e.dst < n());
int id = m();
edges.push_back(e);
adj[e.src].emplace_back(e.dst, id);
if (not directed) adj[e.dst].emplace_back(e.src, id);
return id;
}
};
struct DfsTree : Graph {
using T = decltype(Edge::cost);
std::vector<int> root;
std::vector<int> pv;
std::vector<int> pe;
std::vector<int> order;
std::vector<int> in;
std::vector<int> out;
std::vector<int> sub;
std::vector<int> depth;
std::vector<int> min_depth;
std::vector<T> dist;
std::vector<int> last;
int num_trials;
DfsTree() {}
explicit DfsTree(int n)
: Graph(n),
root(n, -1),
pv(n, -1),
pe(n, -1),
in(n, -1),
out(n, -1),
sub(n, -1),
depth(n, -1),
min_depth(n, -1),
dist(n, std::numeric_limits<T>::max()),
last(n, -1),
num_trials(0) {}
int add_edge(const Edge& e) { return Graph::add_edge(e, false); }
void dfs(int r, bool clear_order = true) {
__glibcxx_assert(0 <= r and r < n());
root[r] = r;
pv[r] = -1;
pe[r] = -1;
if (clear_order) order.clear();
depth[r] = 0;
dist[r] = T{};
dfs_impl(r);
++num_trials;
}
void dfs_all() {
std::fill(std::begin(root), std::end(root), -1);
for (int v = 0; v < n(); ++v)
if (root[v] == -1) dfs(v, v == 0);
}
int deeper(int id) const {
__glibcxx_assert(0 <= id and id < m());
int a = edges[id].src;
int b = edges[id].dst;
return depth[a] < depth[b] ? b : a;
}
bool is_tree_edge(int id) const {
__glibcxx_assert(0 <= id and id < m());
return id == pe[deeper(id)];
}
bool is_ancestor(int u, int v) const {
__glibcxx_assert(0 <= u and u < n());
__glibcxx_assert(0 <= v and v < n());
return in[u] <= in[v] and out[v] <= out[u];
}
private:
void dfs_impl(int v) {
in[v] = std::size(order);
order.push_back(v);
sub[v] = 1;
min_depth[v] = depth[v];
last[v] = num_trials;
for (auto&& [u, id] : adj[v]) {
if (id == pe[v]) continue;
if (last[u] == num_trials) {
min_depth[v] = std::min(min_depth[v], depth[u]);
continue;
}
root[u] = root[v];
pv[u] = v;
pe[u] = id;
depth[u] = depth[v] + 1;
dist[u] = dist[v] + edges[id].cost;
dfs_impl(u);
sub[v] += sub[u];
min_depth[v] = std::min(min_depth[v], min_depth[u]);
}
out[v] = std::size(order);
}
};
struct HldTree : DfsTree {
std::vector<int> head;
HldTree() {}
explicit HldTree(int n) : DfsTree(n), head(n, -1) {}
void build(int r, bool clear_order = true) {
__glibcxx_assert(0 <= r and r < n());
dfs(r, clear_order);
order.erase(std::end(order) - sub[r], std::end(order));
head[r] = r;
build_impl(r);
}
void build_all() {
std::fill(std::begin(root), std::end(root), -1);
for (int v = 0; v < n(); ++v)
if (root[v] == -1) build(v, v == 0);
}
int lca(int u, int v) const {
__glibcxx_assert(0 <= u and u < n());
__glibcxx_assert(0 <= v and v < n());
__glibcxx_assert(root[u] == root[v]);
while (true) {
if (in[u] > in[v]) std::swap(u, v);
if (head[u] == head[v]) return u;
v = pv[head[v]];
}
}
int d(int u, int v) const {
__glibcxx_assert(0 <= u and u < n());
__glibcxx_assert(0 <= v and v < n());
__glibcxx_assert(root[u] == root[v]);
return depth[u] + depth[v] - 2 * depth[lca(u, v)];
}
T distance(int u, int v) const {
__glibcxx_assert(0 <= u and u < n());
__glibcxx_assert(0 <= v and v < n());
__glibcxx_assert(root[u] == root[v]);
return dist[u] + dist[v] - 2 * dist[lca(u, v)];
}
int la(int v, int d) const {
__glibcxx_assert(0 <= v and v < n());
__glibcxx_assert(0 <= d and d <= depth[v]);
while (depth[head[v]] > d) v = pv[head[v]];
return order[in[head[v]] + (d - depth[head[v]])];
}
int next(int src, int dst) const {
__glibcxx_assert(0 <= src and src < n());
__glibcxx_assert(0 <= dst and dst < n());
__glibcxx_assert(root[src] == root[dst]);
__glibcxx_assert(src != dst);
if (not is_ancestor(src, dst)) return pv[src];
return la(dst, depth[src] + 1);
}
int next(int src, int dst, int k) const {
__glibcxx_assert(0 <= src and src < n());
__glibcxx_assert(0 <= dst and dst < n());
__glibcxx_assert(root[src] == root[dst]);
__glibcxx_assert(k >= 0);
int v = lca(src, dst);
if (k <= depth[src] - depth[v]) return la(src, depth[src] - k);
k -= depth[src] - depth[v];
__glibcxx_assert(k <= depth[dst] - depth[v]);
return la(dst, depth[v] + k);
}
template <class Function>
void apply(int src, int dst, bool vertex, Function f) const {
__glibcxx_assert(0 <= src and src < n());
__glibcxx_assert(0 <= dst and dst < n());
__glibcxx_assert(root[src] == root[dst]);
int v = lca(src, dst);
while (head[src] != head[v]) {
f(in[src] + 1, in[head[src]]);
src = pv[head[src]];
}
if (vertex)
f(in[src] + 1, in[v]);
else if (src != v)
f(in[src] + 1, in[v] + 1);
auto rec = [&](auto self, int to) -> void {
if (head[v] == head[to]) {
if (v != to) f(in[v] + 1, in[to] + 1);
return;
}
self(self, pv[head[to]]);
f(in[head[to]], in[to] + 1);
};
rec(rec, dst);
}
template <class Searcher>
int search(int src, int dst, bool vertex, Searcher f) const {
__glibcxx_assert(0 <= src and src < n());
__glibcxx_assert(0 <= dst and dst < n());
__glibcxx_assert(root[src] == root[dst]);
int res = -1;
apply(src, dst, vertex, [&](int l, int r) {
if (res != -1) return;
int i = f(l, r);
if (l > r) std::swap(l, r);
if (l <= i and i < r) res = vertex ? order[i] : pe[order[i]];
});
return res;
}
private:
void build_impl(int v) {
in[v] = std::size(order);
order.push_back(v);
auto pos =
std::partition(std::begin(adj[v]), std::end(adj[v]),
[&](auto&& e) { return e.second == pe[e.first]; });
auto it = std::max_element(
std::begin(adj[v]), pos,
[&](auto&& a, auto&& b) { return sub[a.first] < sub[b.first]; });
if (it != std::begin(adj[v])) std::iter_swap(std::begin(adj[v]), it);
std::partition(pos, std::end(adj[v]),
[&](auto&& e) { return e.second == pe[v]; });
for (auto&& [u, id] : adj[v]) {
if (id != pe[u]) break;
head[u] = u == adj[v].front().first ? head[v] : u;
build_impl(u);
}
out[v] = std::size(order);
}
};
namespace std {
template <class T1, class T2>
istream& operator>>(istream& is, pair<T1, T2>& p) {
return is >> p.first >> p.second;
}
template <class... Ts>
istream& operator>>(istream& is, tuple<Ts...>& t) {
return apply([&is](auto&... xs) -> istream& { return (is >> ... >> xs); }, t);
}
template <class... Ts>
istream& operator>>(istream& is, tuple<Ts&...>&& t) {
return is >> t;
}
template <class R, enable_if_t<!is_convertible_v<R, string>>* = nullptr>
auto operator>>(istream& is, R&& r) -> decltype(is >> *begin(r)) {
for (auto&& e : r) {
is >> e;
}
return is;
}
template <class T1, class T2>
ostream& operator<<(ostream& os, const pair<T1, T2>& p) {
return os << p.first << ' ' << p.second;
}
template <class... Ts>
ostream& operator<<(ostream& os, const tuple<Ts...>& t) {
auto f = [&os](const auto&... xs) -> ostream& {
[[maybe_unused]] auto sep = "";
((os << exchange(sep, " ") << xs), ...);
return os;
};
return apply(f, t);
}
template <class R, enable_if_t<!is_convertible_v<R, string_view>>* = nullptr>
auto operator<<(ostream& os, R&& r) -> decltype(os << *begin(r)) {
auto sep = "";
for (auto&& e : r) {
os << exchange(sep, " ") << e;
}
return os;
}
} // namespace std
namespace atcoder {
template <class T, internal::is_modint_t<T>* = nullptr>
istream& operator>>(istream& is, T& x) {
int v;
is >> v;
x = T::raw(v);
return is;
}
template <class T, internal::is_modint_t<T>* = nullptr>
ostream& operator<<(ostream& os, const T& x) {
return os << x.val();
}
} // namespace atcoder
#endif // __INCLUDE_LEVEL__
הההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההה
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
0