結果
問題 | No.2336 Do you like typical problems? |
ユーザー |
![]() |
提出日時 | 2023-06-02 23:19:23 |
言語 | C++17 (gcc 13.3.0 + boost 1.87.0) |
結果 |
AC
|
実行時間 | 565 ms / 2,000 ms |
コード長 | 11,974 bytes |
コンパイル時間 | 3,075 ms |
コンパイル使用メモリ | 213,448 KB |
最終ジャッジ日時 | 2025-02-13 20:35:35 |
ジャッジサーバーID (参考情報) |
judge3 / judge1 |
(要ログイン)
ファイルパターン | 結果 |
---|---|
sample | AC * 3 |
other | AC * 18 |
ソースコード
// clang-format off#ifdef _LOCAL#include <pch.hpp>#else#include <bits/stdc++.h>#define cerr if (false) cerr#define debug_bar#define debug(...)#define debug2(vv)#define debug3(vvv)#endifusing namespace std;using ll = long long;using ld = long double;using str = string;using P = pair<ll,ll>;using VP = vector<P>;using VVP = vector<VP>;using VC = vector<char>;using VS = vector<string>;using VVS = vector<VS>;using VI = vector<int>;using VVI = vector<VI>;using VVVI = vector<VVI>;using VLL = vector<ll>;using VVLL = vector<VLL>;using VVVLL = vector<VVLL>;using VB = vector<bool>;using VVB = vector<VB>;using VVVB = vector<VVB>;using VD = vector<double>;using VVD = vector<VD>;using VVVD = vector<VVD>;#define FOR(i,l,r) for (ll i = (l); i < (r); ++i)#define RFOR(i,l,r) for (ll i = (r)-1; (l) <= i; --i)#define REP(i,n) FOR(i,0,n)#define RREP(i,n) RFOR(i,0,n)#define FORE(e,c) for (auto&& e : c)#define ALL(c) (c).begin(), (c).end()#define SORT(c) sort(ALL(c))#define RSORT(c) sort((c).rbegin(), (c).rend())#define MIN(c) *min_element(ALL(c))#define MAX(c) *max_element(ALL(c))#define COUNT(c,v) count(ALL(c),(v))#define len(c) ((ll)(c).size())#define BIT(b,i) (((b)>>(i)) & 1)#define PCNT(b) ((ll)__builtin_popcountll(b))#define LB(c,v) distance((c).begin(), lower_bound(ALL(c), (v)))#define UB(c,v) distance((c).begin(), upper_bound(ALL(c), (v)))#define UQ(c) do { SORT(c); (c).erase(unique(ALL(c)), (c).end()); (c).shrink_to_fit(); } while (0)#define END(...) do { print(__VA_ARGS__); exit(0); } while (0)constexpr ld EPS = 1e-10;constexpr ld PI = acosl(-1.0);constexpr int inf = (1 << 30) - (1 << 15); // 1,073,709,056constexpr ll INF = (1LL << 62) - (1LL << 31); // 4,611,686,016,279,904,256template<class... T> void input(T&... a) { (cin >> ... >> a); }void print() { cout << '\n'; }template<class T> void print(const T& a) { cout << a << '\n'; }template<class P1, class P2> void print(const pair<P1, P2>& a) { cout << a.first << " " << a.second << '\n'; }template<class T, class... Ts> void print(const T& a, const Ts&... b) { cout << a; (cout << ... << (cout << ' ', b)); cout << '\n'; }template<class T> void cout_line(const vector<T>& ans, int l, int r) { for (int i = l; i < r; i++) { if (i != l) { cout << ' '; } cout << ans[i]; }cout << '\n'; }template<class T> void print(const vector<T>& a) { cout_line(a, 0, a.size()); }template<class S, class T> bool chmin(S& a, const T b) { if (b < a) { a = b; return 1; } return 0; }template<class S, class T> bool chmax(S& a, const T b) { if (a < b) { a = b; return 1; } return 0; }template<class T> T SUM(const vector<T>& A) { return accumulate(ALL(A), T(0)); }template<class T> vector<T> cumsum(const vector<T>& A, bool offset = false) { int N = A.size(); vector<T> S(N+1, 0); for (int i = 0; i < N; i++) {S[i+1] = S[i] + A[i]; } if (not offset) { S.erase(S.begin()); } return S; }template<class T> string to_binary(T x, int B = 0) { string s; while (x) { s += ('0' + (x & 1)); x >>= 1; } while ((int)s.size() < B) { s += '0'; }reverse(s.begin(), s.end()); return s; }template<class F> ll binary_search(const F& is_ok, ll ok, ll ng) { while (abs(ok - ng) > 1) { ll m = (ok + ng) / 2; (is_ok(m) ? ok : ng) = m; }return ok; }template<class F> double binary_search_real(const F& is_ok, double ok, double ng, int iter = 90) { for (int i = 0; i < iter; i++) { double m = (ok +ng) / 2; (is_ok(m) ? ok : ng) = m; } return ok; }template<class T> using PQ_max = priority_queue<T>;template<class T> using PQ_min = priority_queue<T, vector<T>, greater<T>>;template<class T> T pick(stack<T>& s) { assert(not s.empty()); T x = s.top(); s.pop(); return x; }template<class T> T pick(queue<T>& q) { assert(not q.empty()); T x = q.front(); q.pop(); return x; }template<class T> T pick_front(deque<T>& dq) { assert(not dq.empty()); T x = dq.front(); dq.pop_front(); return x; }template<class T> T pick_back(deque<T>& dq) { assert(not dq.empty()); T x = dq.back(); dq.pop_back(); return x; }template<class T> T pick(PQ_min<T>& pq) { assert(not pq.empty()); T x = pq.top(); pq.pop(); return x; }template<class T> T pick(PQ_max<T>& pq) { assert(not pq.empty()); T x = pq.top(); pq.pop(); return x; }template<class T> T pick(vector<T>& v) { assert(not v.empty()); T x = v.back(); v.pop_back(); return x; }int to_int(const char c) { if (islower(c)) { return (c - 'a'); } if (isupper(c)) { return (c - 'A'); } if (isdigit(c)) { return (c - '0'); } assert(false); }char to_a(const int i) { assert(0 <= i && i < 26); return ('a' + i); }char to_A(const int i) { assert(0 <= i && i < 26); return ('A' + i); }char to_d(const int i) { assert(0 <= i && i <= 9); return ('0' + i); }ll min(int a, ll b) { return min((ll)a, b); }ll min(ll a, int b) { return min(a, (ll)b); }ll max(int a, ll b) { return max((ll)a, b); }ll max(ll a, int b) { return max(a, (ll)b); }ll mod(ll x, ll m) { assert(m > 0); return (x % m + m) % m; }ll ceil(ll a, ll b) { if (b < 0) { return ceil(-a, -b); } assert(b > 0); return (a < 0 ? a / b : (a + b - 1) / b); }ll floor(ll a, ll b) { if (b < 0) { return floor(-a, -b); } assert(b > 0); return (a > 0 ? a / b : (a - b + 1) / b); }ll powint(ll x, ll n) { assert(n >= 0); if (n == 0) { return 1; }; ll res = powint(x, n>>1); res *= res; if (n & 1) { res *= x; } return res; }pair<ll,ll> divmod(ll a, ll b) { assert(b != 0); ll q = floor(a, b); return make_pair(q, a - q * b); }ll bitlen(ll b) { if (b <= 0) { return 0; } return (64LL - __builtin_clzll(b)); }ll digitlen(ll n) { assert(n >= 0); if (n == 0) { return 1; } ll sum = 0; while (n > 0) { sum++; n /= 10; } return sum; }ll msb(ll b) { return (b <= 0 ? -1 : (63 - __builtin_clzll(b))); }ll lsb(ll b) { return (b <= 0 ? -1 : __builtin_ctzll(b)); }// --------------------------------------------------------#include <atcoder/modint>using namespace atcoder;// constexpr ll MOD = 1000003;// using mint = modint;// mint::set_mod(MOD); // write in main()// using mint = modint1000000007;using mint = modint998244353;using VM = vector<mint>;using VVM = vector<VM>;using VVVM = vector<VVM>;using VVVVM = vector<VVVM>;template<int M> istream &operator>>(istream &is, static_modint<M> &m) { ll v; is >> v; m = v; return is; }template<int M> istream &operator>>(istream &is, dynamic_modint<M> &m) { ll v; is >> v; m = v; return is; }template<int M> ostream &operator<<(ostream &os, const static_modint<M> &m) { return os << m.val(); }template<int M> ostream &operator<<(ostream &os, const dynamic_modint<M> &m) { return os << m.val(); }// It is assumed that M (= mod) is prime numberstruct combination {public:combination() : combination(1) {}combination(int n) : N(1), _fact(2,1), _ifact(2,1) {M = mint().mod();assert(0 < n && n < M);if (N < n) { build(n); }}mint P(int n, int k) {if (N < n) { build(n); }if (n < 0 || k < 0 || n < k) { return 0; }return _fact[n] * _ifact[n-k];}mint C(int n, int k) {if (N < n) { build(n); }if (n < 0 || k < 0 || n < k) { return 0; }return _fact[n] * _ifact[n-k] * _ifact[k];}mint H(int n, int k) {if (n == 0 && k == 0) { return 1; }if (n < 0 || k < 0) { return 0; }return C(n + k - 1, k);}mint fact(int n) {if (N < n) { build(n); }if (n < 0) { return 0; }return _fact[n];}mint ifact(int n) {if (N < n) { build(n); }if (n < 0) { return 0; }return _ifact[n];}mint P_naive(ll n, int k) const noexcept {if (n < 0 || k < 0 || n < k) { return 0; }mint res = 1;for (int i = 1; i <= k; i++) { res *= (n - i + 1); }return res;}mint C_naive(ll n, int k) const noexcept {if (n < 0 || k < 0 || n < k) { return 0; }if (k > n - k) { k = n - k; }mint nume = 1, deno = 1;for (int i = 1; i <= k; i++) { nume *= (n - i + 1); deno *= i; }return nume / deno;}mint H_naive(ll n, int k) const noexcept {if (n == 0 && k == 0) { return 1; }if (n < 0 || k < 0) { return 0; }return C_naive(n + k - 1, k);}mint catalan(int n) {if (N < 2 * n) { build(2 * n); }return _fact[2 * n] * _ifact[n + 1] * _ifact[n];}template<class... Ts>mint C_multinomial(int n, int k, Ts... ks) {if (N < n) { build(n); }if (n < 0 || k < 0 || n < k) { return 0; }return C_multinomial(n, ks...) * _ifact[k];}mint C_multinomial(int n, int k) {if (N < n) { build(n); }if (n < 0 || k < 0 || n < k) { return 0; }return _fact[n] * _ifact[k];}private:int N;int M; // modvector<mint> _fact, _ifact;void build(int N_new) {assert(N < N_new);assert(N_new < M);_fact.resize(N_new + 1);_ifact.resize(N_new + 1);for (int i = N + 1; i <= N_new; i++) { _fact[i] = _fact[i - 1] * i; }_ifact[N_new] = _fact[N_new].inv();for (int i = N_new - 1; N + 1 <= i; i--) { _ifact[i] = _ifact[i + 1] * (i + 1); }N = N_new;}};// 座標圧縮template <class T = ll>struct compress {public:compress() {}compress(const vector<T>& A) : xs(A) {}compress(const vector<T>& A, const vector<T>& B) {xs.reserve(A.size() + B.size());for (const auto& a : A) { xs.push_back(a); }for (const auto& b : B) { xs.push_back(b); }}// 値 v を追加する// - amortized O(1)void add(T v) {assert(not is_built);xs.push_back(v);}// 配列 A の値を全て追加する// - O(|A|)void add(const vector<T>& A) {assert(not is_built);xs.reserve(xs.size() + A.size());for (const auto& a : A) { xs.push_back(a); }}// 座標圧縮して種類数を返す// - O(N log N)int build() {assert(not is_built);sort(xs.begin(), xs.end());xs.erase(unique(xs.begin(), xs.end()), xs.end());is_built = true;return xs.size();}// 座標圧縮前で i 番目に大きい値を返す (0-indexed)// - O(1)T operator[] (int i) const noexcept {assert(is_built);assert(0 <= i && i < (int)xs.size());return xs[i];}// 値 v に対応する座標圧縮後の値(番号)を返す// 値 v が元の配列に存在することを想定// - O(log N)int operator() (T v) const noexcept {assert(is_built);auto it = lower_bound(xs.begin(), xs.end(), v);assert(it != xs.end() && *it == v);return distance(xs.begin(), it);}// 座標圧縮後の値の種類数を返す// - O(1)int size() const noexcept {assert(is_built);return xs.size();}private:bool is_built = false;vector<T> xs;};// clang-format onint main() {ios::sync_with_stdio(false);cin.tie(nullptr);cout << fixed << setprecision(15);ll N;input(N);VLL B(N), C(N);REP (i, N) { input(B[i], C[i]); }compress<ll> z(B, C);int M = z.build();VVI add(M), del(M);REP (i, N) {add[z(C[i])].push_back(i);del[z(B[i])].push_back(i);}combination Z(N);mint ans = Z.fact(N) * Z.C(N, 2);mint sum_p = 0;mint sum_pp = 0;RREP (m, M) {mint dx = (m == M - 1 ? 0 : z[m + 1] - z[m] - 1);ans -= sum_pp * dx * Z.fact(N);FORE(i, add[m]) {mint p = mint(C[i] - B[i] + 1).inv();sum_pp += sum_p * p;sum_p += p;}ans -= sum_pp * Z.fact(N);FORE(i, del[m]) {mint p = mint(C[i] - B[i] + 1).inv();sum_p -= p;sum_pp -= sum_p * p;}}ans /= 2;print(ans.val());return 0;}