結果
問題 | No.2337 Equidistant |
ユーザー | navel_tos |
提出日時 | 2023-06-02 23:42:49 |
言語 | PyPy3 (7.3.15) |
結果 |
WA
|
実行時間 | - |
コード長 | 6,099 bytes |
コンパイル時間 | 499 ms |
コンパイル使用メモリ | 82,288 KB |
実行使用メモリ | 540,128 KB |
最終ジャッジ日時 | 2024-12-29 00:04:19 |
合計ジャッジ時間 | 48,374 ms |
ジャッジサーバーID (参考情報) |
judge4 / judge2 |
(要ログイン)
テストケース
テストケース表示入力 | 結果 | 実行時間 実行使用メモリ |
---|---|---|
testcase_00 | AC | 39 ms
54,912 KB |
testcase_01 | WA | - |
testcase_02 | AC | 39 ms
53,408 KB |
testcase_03 | AC | 40 ms
54,052 KB |
testcase_04 | AC | 39 ms
53,544 KB |
testcase_05 | AC | 39 ms
53,732 KB |
testcase_06 | WA | - |
testcase_07 | WA | - |
testcase_08 | WA | - |
testcase_09 | WA | - |
testcase_10 | WA | - |
testcase_11 | WA | - |
testcase_12 | WA | - |
testcase_13 | WA | - |
testcase_14 | WA | - |
testcase_15 | WA | - |
testcase_16 | WA | - |
testcase_17 | WA | - |
testcase_18 | WA | - |
testcase_19 | WA | - |
testcase_20 | WA | - |
testcase_21 | AC | 3,274 ms
504,548 KB |
testcase_22 | AC | 1,857 ms
264,512 KB |
testcase_23 | WA | - |
testcase_24 | AC | 3,711 ms
507,400 KB |
testcase_25 | WA | - |
testcase_26 | TLE | - |
testcase_27 | WA | - |
testcase_28 | WA | - |
ソースコード
#yukicoder391D ''' 全方位木DPで気合いいれて解くしかないかなぁ。 まずこのXはSi,Tiの経路から分岐した点でないといけないよね? だからこの経路上を探索しないといけない 二点の中点と、そこから分岐する頂点数がわかればよさそうだ。 LCAと全方位木DPで戦うか。きつい戦いになりそうだ。 一旦ライブラリを貼る。 ''' #最小共通祖先 ライブラリ class LowestCommonAncestor: def __init__(self,n): self._n=n;n=0 while 2**(n/10)<self._n:n+=1 self._logn=int(n/10+2);self._depth=[0 for _ in [0]*self._n];self._distance=[0 for _ in [0]*self._n];self._ancestor=[[-1 for _ in [0]*self._n] for k in [0]*self._logn];self._edge=[[] for _ in [0]*self._n] def add_edge(self,u,v,w=1):self._edge[u].append((v,w));self._edge[v].append((u,w)) def build(self,root=0): #rootを指定し、その他の頂点に祖先情報を書き込む stack=[root] while stack: now=stack.pop() for nxt,w in self._edge[now]: if self._ancestor[0][nxt]!=now and self._ancestor[0][now]!=nxt:self._ancestor[0][nxt]=now;self._depth[nxt]=self._depth[now]+1;self._distance[nxt]=self._distance[now]+w;stack.append(nxt) for k in range(1,self._logn): for i in range(self._n): if self._ancestor[k-1][i]==-1:self._ancestor[k][i]=-1 else:self._ancestor[k][i]=self._ancestor[k-1][self._ancestor[k-1][i]] def LCA(self,u,v): if self._depth[u]>self._depth[v]:u,v=v,u for k in range(self._logn-1,-1,-1):v=self._ancestor[k][v] if((self._depth[v]-self._depth[u])>>k)&1 else v if u==v:return u for k in range(self._logn-1,-1,-1): #ギリギリ一致する直前まで祖先を辿る if self._ancestor[k][u]!=self._ancestor[k][v]: u,v=self._ancestor[k][u],self._ancestor[k][v] return self._ancestor[0][u] def distance(self,u,v):return self._distance[u]+self._distance[v]-2*self._distance[self.LCA(u,v)] import sys; sys.setrecursionlimit(10**7); input=sys.stdin.readline f=lambda:list(map(int,input().split())) N,Q=f(); G=[[] for _ in range(N)]; LCA=LowestCommonAncestor(N) for _ in range(N-1): a,b=f(); G[a-1].append(b-1); G[b-1].append(a-1); LCA.add_edge(a-1,b-1) #面倒くさいので、親は次数1の頂点とする for P in range(N): if len(G[P])==1: break LCA.build(P) ''' 考察再開。 ここから全方位木DPを行えば、「どの方向の辺を辿るとどれだけの頂点があるか」は 即答できるようになる。問題は、どの辺はカウントが不要なのか考えないといけない。 結局DFSかなぁ。どこが争点となるかは事前に判別可能だから、それを使ってDFSかな。 まずは中点の判定を行おう。丁寧にやれば大丈夫そう。 ''' Task=[0]*Q; MidPoint=[-1]*Q; checkpoint=[[] for _ in range(N)]; MP=[set() for _ in range(N)] for i in range(Q): a,b=f(); a-=1; b-=1; Task[i]=(a,b) x=LCA.LCA(a,b); da,db,dx=LCA._distance[a],LCA._distance[b],LCA._distance[x] da,db=da-dx,db-dx #LCAからaの距離、LCAからbの距離を格納 if (da+db)%2: continue mid=(da+db)//2 if da>=mid: #aからmidだけ戻った頂点をMidPointに格納する midp=bin(mid)[2:]; midL=len(midp); now=a else: midp=bin(mid)[2:]; midL=len(midp); now=b for j in range(midL): midbit=midL-1-j if midp[j]=='1': now=LCA._ancestor[midbit][now] MidPoint[i]=now; checkpoint[Task[i][0]].append(i); checkpoint[Task[i][1]].append(i) if da==db: MP[now].add(i) del LCA ''' この前処理で、各クエリの中点は判定できた。 あり得るケースは 1. 経路上に2点があり、経路中に中点がある 2. 分岐上に2点がある ケース。 DFSで「始点から何個頂点があるか」を保持しつつ、 帰りがけに「どの辺方向を辿ると、その先に何個頂点があるか」を返せばいいか。 違うな。 各中点クエリに対して、帰りがけに「この辺方向から来たやつは数えちゃだめよ」をやるのか。 1. 各頂点の「親方向を除く」頂点数 2. 各クエリの減算すべき頂点数 これらを別カウントしてDFS、きついけれどこれしかない。 つまり、中点に返ってきた方向の頂点数は数えてはいけない、というルール。 各クエリごとに番号を記録しておき、中点に戻るたびに印をdiscardする感じかな。 各頂点ごとに、中点として判定しなければならないクエリ番号を保持しておくか。 既にvisitedで、かつ戻ってきたときにのみ判定したい。(行きがけは判定しない) できるか?できそう。 「戻ってきたらこれらのクエリ番号に対して、経路上の頂点数の減算を行え」みたいにやるか。 とりあえずTLEによる強制打ち切りは喰らわなかったので、方針はこれでよい。 後はデバッグ。 うわ、1ケースTLEしている。苦しい。 ''' #Vert[i]: 頂点iの、「親方向を除いた」頂点数(部分木の頂点数) Vert=[0]*N; QueryV=[0]*Q; visited=[0]*N; duty=[set() for _ in range(N)]; Save=[0]*N #DFS 部分木の頂点数を数えつつ、帰りがけにdutyを爆破する def yukicoder391D(now,vertice): for i in MP[now]: QueryV[i]+=vertice visited[now]=1; vertice+=1; Save[now]=vertice; Vert[now]+=1 for t in checkpoint[now]: if visited[MidPoint[t]]: duty[MidPoint[t]].add(t) for next in G[now]: if visited[next]: continue vertice=yukicoder391D(next,vertice) #帰りがけにtaskを処理 v=vertice-Save[now]; Save[now]=vertice; Vert[now]+=v #この経路上の頂点数 for taskno in duty[now]: QueryV[taskno]-=v duty[now]=set() return vertice yukicoder391D(P,0) for i in range(Q): if MidPoint[i]==-1: print(0); continue print(Vert[MidPoint[i]]+QueryV[i])