結果
問題 | No.2340 Triple Tree Query (Easy) |
ユーザー |
|
提出日時 | 2023-06-02 23:49:59 |
言語 | C++17 (gcc 13.3.0 + boost 1.87.0) |
結果 |
AC
|
実行時間 | 156 ms / 5,000 ms |
コード長 | 15,359 bytes |
コンパイル時間 | 2,332 ms |
コンパイル使用メモリ | 216,212 KB |
最終ジャッジ日時 | 2025-02-13 21:34:06 |
ジャッジサーバーID (参考情報) |
judge5 / judge1 |
(要ログイン)
ファイルパターン | 結果 |
---|---|
sample | AC * 1 |
other | AC * 36 |
ソースコード
#include <bits/stdc++.h>using namespace std;#define rep(i, n) for (int i = 0; i < (n); i++)#define per(i, n) for (int i = (n)-1; i >= 0; i--)#define rep2(i, l, r) for (int i = (l); i < (r); i++)#define per2(i, l, r) for (int i = (r)-1; i >= (l); i--)#define each(e, v) for (auto &e : v)#define MM << " " <<#define pb push_back#define eb emplace_back#define all(x) begin(x), end(x)#define rall(x) rbegin(x), rend(x)#define sz(x) (int)x.size()using ll = long long;using pii = pair<int, int>;using pil = pair<int, ll>;using pli = pair<ll, int>;using pll = pair<ll, ll>;template <typename T>using minheap = priority_queue<T, vector<T>, greater<T>>;template <typename T>using maxheap = priority_queue<T>;template <typename T>bool chmax(T &x, const T &y) {return (x < y) ? (x = y, true) : false;}template <typename T>bool chmin(T &x, const T &y) {return (x > y) ? (x = y, true) : false;}template <typename T>int flg(T x, int i) {return (x >> i) & 1;}int pct(int x) { return __builtin_popcount(x); }int pct(ll x) { return __builtin_popcountll(x); }int topbit(int x) { return (x == 0 ? -1 : 31 - __builtin_clz(x)); }int topbit(ll x) { return (x == 0 ? -1 : 63 - __builtin_clzll(x)); }int botbit(int x) { return (x == 0 ? -1 : __builtin_ctz(x)); }int botbit(ll x) { return (x == 0 ? -1 : __builtin_ctzll(x)); }template <typename T>void print(const vector<T> &v, T x = 0) {int n = v.size();for (int i = 0; i < n; i++) cout << v[i] + x << (i == n - 1 ? '\n' : ' ');if (v.empty()) cout << '\n';}template <typename T>void printn(const vector<T> &v, T x = 0) {int n = v.size();for (int i = 0; i < n; i++) cout << v[i] + x << '\n';}template <typename T>int lb(const vector<T> &v, T x) {return lower_bound(begin(v), end(v), x) - begin(v);}template <typename T>int ub(const vector<T> &v, T x) {return upper_bound(begin(v), end(v), x) - begin(v);}template <typename T>void rearrange(vector<T> &v) {sort(begin(v), end(v));v.erase(unique(begin(v), end(v)), end(v));}template <typename T>vector<int> id_sort(const vector<T> &v, bool greater = false) {int n = v.size();vector<int> ret(n);iota(begin(ret), end(ret), 0);sort(begin(ret), end(ret), [&](int i, int j) { return greater ? v[i] > v[j] : v[i] < v[j]; });return ret;}template <typename T>void reorder(vector<T> &a, const vector<int> &ord) {int n = a.size();vector<T> b(n);for (int i = 0; i < n; i++) b[i] = a[ord[i]];swap(a, b);}template <typename T>T floor(T x, T y) {assert(y != 0);if (y < 0) x = -x, y = -y;return (x >= 0 ? x / y : (x - y + 1) / y);}template <typename T>T ceil(T x, T y) {assert(y != 0);if (y < 0) x = -x, y = -y;return (x >= 0 ? (x + y - 1) / y : x / y);}template <typename S, typename T>pair<S, T> operator+(const pair<S, T> &p, const pair<S, T> &q) {return make_pair(p.first + q.first, p.second + q.second);}template <typename S, typename T>pair<S, T> operator-(const pair<S, T> &p, const pair<S, T> &q) {return make_pair(p.first - q.first, p.second - q.second);}template <typename S, typename T>istream &operator>>(istream &is, pair<S, T> &p) {S a;T b;is >> a >> b;p = make_pair(a, b);return is;}template <typename S, typename T>ostream &operator<<(ostream &os, const pair<S, T> &p) {return os << p.first << ' ' << p.second;}struct io_setup {io_setup() {ios_base::sync_with_stdio(false);cin.tie(NULL);cout << fixed << setprecision(15);}} io_setup;constexpr int inf = (1 << 30) - 1;constexpr ll INF = (1LL << 60) - 1;// constexpr int MOD = 1000000007;constexpr int MOD = 998244353;template <int mod>struct Mod_Int {int x;Mod_Int() : x(0) {}Mod_Int(long long y) : x(y >= 0 ? y % mod : (mod - (-y) % mod) % mod) {}static int get_mod() { return mod; }Mod_Int &operator+=(const Mod_Int &p) {if ((x += p.x) >= mod) x -= mod;return *this;}Mod_Int &operator-=(const Mod_Int &p) {if ((x += mod - p.x) >= mod) x -= mod;return *this;}Mod_Int &operator*=(const Mod_Int &p) {x = (int)(1LL * x * p.x % mod);return *this;}Mod_Int &operator/=(const Mod_Int &p) {*this *= p.inverse();return *this;}Mod_Int &operator++() { return *this += Mod_Int(1); }Mod_Int operator++(int) {Mod_Int tmp = *this;++*this;return tmp;}Mod_Int &operator--() { return *this -= Mod_Int(1); }Mod_Int operator--(int) {Mod_Int tmp = *this;--*this;return tmp;}Mod_Int operator-() const { return Mod_Int(-x); }Mod_Int operator+(const Mod_Int &p) const { return Mod_Int(*this) += p; }Mod_Int operator-(const Mod_Int &p) const { return Mod_Int(*this) -= p; }Mod_Int operator*(const Mod_Int &p) const { return Mod_Int(*this) *= p; }Mod_Int operator/(const Mod_Int &p) const { return Mod_Int(*this) /= p; }bool operator==(const Mod_Int &p) const { return x == p.x; }bool operator!=(const Mod_Int &p) const { return x != p.x; }Mod_Int inverse() const {assert(*this != Mod_Int(0));return pow(mod - 2);}Mod_Int pow(long long k) const {Mod_Int now = *this, ret = 1;for (; k > 0; k >>= 1, now *= now) {if (k & 1) ret *= now;}return ret;}friend ostream &operator<<(ostream &os, const Mod_Int &p) { return os << p.x; }friend istream &operator>>(istream &is, Mod_Int &p) {long long a;is >> a;p = Mod_Int<mod>(a);return is;}};using mint = Mod_Int<MOD>;template <typename Operator>struct Dual_Segment_Tree {using O = typename Operator::V;int n, m, height;vector<O> lazy;Dual_Segment_Tree(int n) : n(n) {m = 1, height = 0;while (m < n) m <<= 1, height++;lazy.assign(2 * m, Operator::id);}inline void eval(int i) {if (i < m && lazy[i] != Operator::id) {lazy[2 * i] = Operator::merge(lazy[2 * i], lazy[i]);lazy[2 * i + 1] = Operator::merge(lazy[2 * i + 1], lazy[i]);lazy[i] = Operator::id;}}inline void thrust(int i) {for (int j = height; j > 0; j--) eval(i >> j);}void update(int l, int r, const O &x) {l = max(l, 0), r = min(r, n);if (l >= r) return;l += m, r += m;thrust(l), thrust(r - 1);while (l < r) {if (l & 1) lazy[l] = Operator::merge(lazy[l], x), l++;if (r & 1) r--, lazy[r] = Operator::merge(lazy[r], x);l >>= 1, r >>= 1;}}O get(int i) {thrust(i + m);return lazy[i + m];}O operator[](int i) { return get(i); }};// sumtemplate <typename T>struct Plus_Monoid {using V = T;static constexpr V merge(const V &a, const V &b) { return a + b; };static const V id;};template <typename T>const T Plus_Monoid<T>::id = 0;// prodtemplate <typename T>struct Product_Monoid {using V = T;static constexpr V merge(const V &a, const V &b) { return a * b; };static const V id;};template <typename T>const T Product_Monoid<T>::id = 1;// mintemplate <typename T>struct Min_Monoid {using V = T;static constexpr V merge(const V &a, const V &b) { return min(a, b); };static const V id;};template <typename T>constexpr T Min_Monoid<T>::id = numeric_limits<T>::max() / 2;// maxtemplate <typename T>struct Max_Monoid {using V = T;static constexpr V merge(V a, V b) { return max(a, b); };static const V id;};template <typename T>constexpr T Max_Monoid<T>::id = -(numeric_limits<T>::max() / 2);// 代入template <typename T>struct Update_Monoid {using V = T;static constexpr V merge(const V &a, const V &b) {if (a == id) return b;if (b == id) return a;return b;}static const V id;};template <typename T>constexpr T Update_Monoid<T>::id = numeric_limits<T>::max();// min count (T:最大値の型、S:個数の型)template <typename T, typename S>struct Min_Count_Monoid {using V = pair<T, S>;static constexpr V merge(const V &a, const V &b) {if (a.first < b.first) return a;if (a.first > b.first) return b;return V(a.first, a.second + b.second);}static const V id;};template <typename T, typename S>constexpr pair<T, S> Min_Count_Monoid<T, S>::id = make_pair(numeric_limits<T>::max() / 2, 0);// max count (T:最大値の型、S:個数の型)template <typename T, typename S>struct Max_Count_Monoid {using V = pair<T, S>;static constexpr V merge(const V &a, const V &b) {if (a.first > b.first) return a;if (a.first < b.first) return b;return V(a.first, a.second + b.second);}static const V id;};template <typename T, typename S>constexpr pair<T, S> Max_Count_Monoid<T, S>::id = make_pair(-(numeric_limits<T>::max() / 2), 0);// 一次関数 ax+b の合成 (左から順に作用)template <typename T>struct Affine_Monoid {using V = pair<T, T>;static constexpr V merge(const V &a, const V &b) { return V(a.first * b.first, a.second * b.first + b.second); };static const V id;};template <typename T>const pair<T, T> Affine_Monoid<T>::id = make_pair(1, 0);// モノイドの直積template <typename Monoid_1, typename Monoid_2>struct Cartesian_Product_Monoid {using V1 = typename Monoid_1::V;using V2 = typename Monoid_2::V;using V = pair<V1, V2>;static constexpr V merge(const V &a, const V &b) { return V(Monoid_1::merge(a.first, b.first), Monoid_2::merge(a.second, b.second)); }static const V id;};template <typename Monoid_1, typename Monoid_2>const pair<typename Monoid_1::V, typename Monoid_2::V> Cartesian_Product_Monoid<Monoid_1, Monoid_2>::id = make_pair(Monoid_1::id, Monoid_2::id);// range add range mintemplate <typename T>struct Min_Plus_Acted_Monoid {using Monoid = Min_Monoid<T>;using Operator = Plus_Monoid<T>;using M = T;using O = T;static constexpr M merge(const M &a, const O &b) { return a + b; };};// range add range maxtemplate <typename T>struct Max_Plus_Acted_Monoid {using Monoid = Max_Monoid<T>;using Operator = Plus_Monoid<T>;using M = T;using O = T;static constexpr M merge(const M &a, const O &b) { return a + b; };};// range add range min count (T:最小値の型、S:個数の型)template <typename T, typename S>struct Min_Count_Add_Acted_Monoid {using Monoid = Min_Count_Monoid<T, S>;using Operator = Plus_Monoid<T>;using M = pair<T, S>;using O = T;static constexpr M merge(const M &a, const O &b) { return make_pair(a.first + b, a.second); };};// range add range max count (T:最大値の型、S:個数の型)template <typename T, typename S>struct Max_Count_Add_Acted_Monoid {using Monoid = Max_Count_Monoid<T, S>;using Operator = Plus_Monoid<T>;using M = pair<T, S>;using O = T;static constexpr M merge(const M &a, const O &b) { return make_pair(a.first + b, a.second); };};// range add range sumtemplate <typename T>struct Plus_Plus_Acted_Monoid {using Monoid = Cartesian_Product_Monoid<Plus_Monoid<T>, Plus_Monoid<int>>;using Operator = Plus_Monoid<T>;using M = pair<T, int>;using O = T;static constexpr M merge(const M &a, const O &b) { return M(a.first + b * a.second, a.second); }};// range update range sumtemplate <typename T>struct Plus_Update_Acted_Monoid {using Monoid = Cartesian_Product_Monoid<Plus_Monoid<T>, Plus_Monoid<int>>;using Operator = Update_Monoid<T>;using M = pair<T, int>;using O = T;static constexpr M merge(const M &a, const O &b) { return b == Operator::id ? a : M(b * a.second, a.second); }};// range update range mintemplate <typename T>struct Min_Update_Acted_Monoid {using Monoid = Min_Monoid<T>;using Operator = Update_Monoid<T>;using M = T;using O = T;static constexpr M merge(const M &a, const O &b) { return b == Operator::id ? a : b; }};// range update range maxtemplate <typename T>struct Max_Update_Acted_Monoid {using Monoid = Max_Monoid<T>;using Operator = Update_Monoid<T>;using M = T;using O = T;static constexpr M merge(const M &a, const O &b) { return b == Operator::id ? a : b; }};// range affine range sumtemplate <typename T>struct Plus_Affine_Acted_Monoid {using Monoid = Cartesian_Product_Monoid<Plus_Monoid<T>, Plus_Monoid<T>>;using Operator = Affine_Monoid<T>;using M = pair<T, T>;using O = pair<T, T>;static constexpr M merge(const M &a, const O &b) { return M(b.first * a.first + b.second * a.second, a.second); };};void solve() {int N, Q;cin >> N >> Q;vector<vector<int>> es(N);rep(i, N - 1) {int u, v;cin >> u >> v;u--, v--;es[u].eb(v), es[v].eb(u);}vector<int> par(N, -1);vector<int> si(N, 1);vector<int> id(N, -1), l1(N, -1), r1(N, -1), l2(N, -1), r2(N, -1);auto dfs = [&](int now, int pre, auto &&dfs) -> int {par[now] = pre;each(e, es[now]) {if (e == pre) continue;si[now] += dfs(e, now, dfs);}return si[now];};dfs(0, -1, dfs);deque<int> que;que.push_front(0);int t = 0;id[0] = t++;while (!empty(que)) {int now = que.front();que.pop_front();vector<int> v;each(e, es[now]) {if (e == par[now]) continue;v.eb(e);id[e] = t++;}reverse(all(v));each(e, v) que.push_front(e);}rep(now, N) {vector<int> v;each(e, es[now]) {if (e == par[now]) continue;v.eb(e);}// cout << "! " << now << ' ';// print(v);if (!empty(v)) {l1[now] = id[v[0]];r1[now] = id[v.back()] + 1;l2[now] = id[v[0]];r2[now] = l2[now] + si[now] - 1;}}// print(id), print(l1), print(r1), print(r2);vector<mint> x(N);rep(i, N) cin >> x[i];Dual_Segment_Tree<Affine_Monoid<mint>> seg(N);while (Q--) {int t, v;cin >> t >> v;v--;if (t == 1) {auto [a, b] = seg[id[v]];cout << a * x[v] + b << '\n';} else if (t == 2) {int K;mint a, b;cin >> K >> a >> b;if (l1[v] != -1) {seg.update(l1[v], r1[v], {a, b}); //}seg.update(id[v], id[v] + 1, {a, b});if (par[v] != -1) {int u = par[v];seg.update(id[u], id[u] + 1, {a, b});}} else {mint a, b;cin >> a >> b;if (l2[v] != -1) {seg.update(l2[v], r2[v], {a, b}); //}seg.update(id[v], id[v] + 1, {a, b});}}}int main() {int T = 1;// cin >> T;while (T--) solve();}