結果

問題 No.2340 Triple Tree Query (Easy)
ユーザー tokusakurai
提出日時 2023-06-02 23:49:59
言語 C++17
(gcc 13.3.0 + boost 1.87.0)
結果
AC  
実行時間 156 ms / 5,000 ms
コード長 15,359 bytes
コンパイル時間 2,332 ms
コンパイル使用メモリ 216,212 KB
最終ジャッジ日時 2025-02-13 21:34:06
ジャッジサーバーID
(参考情報)
judge5 / judge1
このコードへのチャレンジ
(要ログイン)
ファイルパターン 結果
sample AC * 1
other AC * 36
権限があれば一括ダウンロードができます

ソースコード

diff #
プレゼンテーションモードにする

#include <bits/stdc++.h>
using namespace std;
#define rep(i, n) for (int i = 0; i < (n); i++)
#define per(i, n) for (int i = (n)-1; i >= 0; i--)
#define rep2(i, l, r) for (int i = (l); i < (r); i++)
#define per2(i, l, r) for (int i = (r)-1; i >= (l); i--)
#define each(e, v) for (auto &e : v)
#define MM << " " <<
#define pb push_back
#define eb emplace_back
#define all(x) begin(x), end(x)
#define rall(x) rbegin(x), rend(x)
#define sz(x) (int)x.size()
using ll = long long;
using pii = pair<int, int>;
using pil = pair<int, ll>;
using pli = pair<ll, int>;
using pll = pair<ll, ll>;
template <typename T>
using minheap = priority_queue<T, vector<T>, greater<T>>;
template <typename T>
using maxheap = priority_queue<T>;
template <typename T>
bool chmax(T &x, const T &y) {
return (x < y) ? (x = y, true) : false;
}
template <typename T>
bool chmin(T &x, const T &y) {
return (x > y) ? (x = y, true) : false;
}
template <typename T>
int flg(T x, int i) {
return (x >> i) & 1;
}
int pct(int x) { return __builtin_popcount(x); }
int pct(ll x) { return __builtin_popcountll(x); }
int topbit(int x) { return (x == 0 ? -1 : 31 - __builtin_clz(x)); }
int topbit(ll x) { return (x == 0 ? -1 : 63 - __builtin_clzll(x)); }
int botbit(int x) { return (x == 0 ? -1 : __builtin_ctz(x)); }
int botbit(ll x) { return (x == 0 ? -1 : __builtin_ctzll(x)); }
template <typename T>
void print(const vector<T> &v, T x = 0) {
int n = v.size();
for (int i = 0; i < n; i++) cout << v[i] + x << (i == n - 1 ? '\n' : ' ');
if (v.empty()) cout << '\n';
}
template <typename T>
void printn(const vector<T> &v, T x = 0) {
int n = v.size();
for (int i = 0; i < n; i++) cout << v[i] + x << '\n';
}
template <typename T>
int lb(const vector<T> &v, T x) {
return lower_bound(begin(v), end(v), x) - begin(v);
}
template <typename T>
int ub(const vector<T> &v, T x) {
return upper_bound(begin(v), end(v), x) - begin(v);
}
template <typename T>
void rearrange(vector<T> &v) {
sort(begin(v), end(v));
v.erase(unique(begin(v), end(v)), end(v));
}
template <typename T>
vector<int> id_sort(const vector<T> &v, bool greater = false) {
int n = v.size();
vector<int> ret(n);
iota(begin(ret), end(ret), 0);
sort(begin(ret), end(ret), [&](int i, int j) { return greater ? v[i] > v[j] : v[i] < v[j]; });
return ret;
}
template <typename T>
void reorder(vector<T> &a, const vector<int> &ord) {
int n = a.size();
vector<T> b(n);
for (int i = 0; i < n; i++) b[i] = a[ord[i]];
swap(a, b);
}
template <typename T>
T floor(T x, T y) {
assert(y != 0);
if (y < 0) x = -x, y = -y;
return (x >= 0 ? x / y : (x - y + 1) / y);
}
template <typename T>
T ceil(T x, T y) {
assert(y != 0);
if (y < 0) x = -x, y = -y;
return (x >= 0 ? (x + y - 1) / y : x / y);
}
template <typename S, typename T>
pair<S, T> operator+(const pair<S, T> &p, const pair<S, T> &q) {
return make_pair(p.first + q.first, p.second + q.second);
}
template <typename S, typename T>
pair<S, T> operator-(const pair<S, T> &p, const pair<S, T> &q) {
return make_pair(p.first - q.first, p.second - q.second);
}
template <typename S, typename T>
istream &operator>>(istream &is, pair<S, T> &p) {
S a;
T b;
is >> a >> b;
p = make_pair(a, b);
return is;
}
template <typename S, typename T>
ostream &operator<<(ostream &os, const pair<S, T> &p) {
return os << p.first << ' ' << p.second;
}
struct io_setup {
io_setup() {
ios_base::sync_with_stdio(false);
cin.tie(NULL);
cout << fixed << setprecision(15);
}
} io_setup;
constexpr int inf = (1 << 30) - 1;
constexpr ll INF = (1LL << 60) - 1;
// constexpr int MOD = 1000000007;
constexpr int MOD = 998244353;
template <int mod>
struct Mod_Int {
int x;
Mod_Int() : x(0) {}
Mod_Int(long long y) : x(y >= 0 ? y % mod : (mod - (-y) % mod) % mod) {}
static int get_mod() { return mod; }
Mod_Int &operator+=(const Mod_Int &p) {
if ((x += p.x) >= mod) x -= mod;
return *this;
}
Mod_Int &operator-=(const Mod_Int &p) {
if ((x += mod - p.x) >= mod) x -= mod;
return *this;
}
Mod_Int &operator*=(const Mod_Int &p) {
x = (int)(1LL * x * p.x % mod);
return *this;
}
Mod_Int &operator/=(const Mod_Int &p) {
*this *= p.inverse();
return *this;
}
Mod_Int &operator++() { return *this += Mod_Int(1); }
Mod_Int operator++(int) {
Mod_Int tmp = *this;
++*this;
return tmp;
}
Mod_Int &operator--() { return *this -= Mod_Int(1); }
Mod_Int operator--(int) {
Mod_Int tmp = *this;
--*this;
return tmp;
}
Mod_Int operator-() const { return Mod_Int(-x); }
Mod_Int operator+(const Mod_Int &p) const { return Mod_Int(*this) += p; }
Mod_Int operator-(const Mod_Int &p) const { return Mod_Int(*this) -= p; }
Mod_Int operator*(const Mod_Int &p) const { return Mod_Int(*this) *= p; }
Mod_Int operator/(const Mod_Int &p) const { return Mod_Int(*this) /= p; }
bool operator==(const Mod_Int &p) const { return x == p.x; }
bool operator!=(const Mod_Int &p) const { return x != p.x; }
Mod_Int inverse() const {
assert(*this != Mod_Int(0));
return pow(mod - 2);
}
Mod_Int pow(long long k) const {
Mod_Int now = *this, ret = 1;
for (; k > 0; k >>= 1, now *= now) {
if (k & 1) ret *= now;
}
return ret;
}
friend ostream &operator<<(ostream &os, const Mod_Int &p) { return os << p.x; }
friend istream &operator>>(istream &is, Mod_Int &p) {
long long a;
is >> a;
p = Mod_Int<mod>(a);
return is;
}
};
using mint = Mod_Int<MOD>;
template <typename Operator>
struct Dual_Segment_Tree {
using O = typename Operator::V;
int n, m, height;
vector<O> lazy;
Dual_Segment_Tree(int n) : n(n) {
m = 1, height = 0;
while (m < n) m <<= 1, height++;
lazy.assign(2 * m, Operator::id);
}
inline void eval(int i) {
if (i < m && lazy[i] != Operator::id) {
lazy[2 * i] = Operator::merge(lazy[2 * i], lazy[i]);
lazy[2 * i + 1] = Operator::merge(lazy[2 * i + 1], lazy[i]);
lazy[i] = Operator::id;
}
}
inline void thrust(int i) {
for (int j = height; j > 0; j--) eval(i >> j);
}
void update(int l, int r, const O &x) {
l = max(l, 0), r = min(r, n);
if (l >= r) return;
l += m, r += m;
thrust(l), thrust(r - 1);
while (l < r) {
if (l & 1) lazy[l] = Operator::merge(lazy[l], x), l++;
if (r & 1) r--, lazy[r] = Operator::merge(lazy[r], x);
l >>= 1, r >>= 1;
}
}
O get(int i) {
thrust(i + m);
return lazy[i + m];
}
O operator[](int i) { return get(i); }
};
// sum
template <typename T>
struct Plus_Monoid {
using V = T;
static constexpr V merge(const V &a, const V &b) { return a + b; };
static const V id;
};
template <typename T>
const T Plus_Monoid<T>::id = 0;
// prod
template <typename T>
struct Product_Monoid {
using V = T;
static constexpr V merge(const V &a, const V &b) { return a * b; };
static const V id;
};
template <typename T>
const T Product_Monoid<T>::id = 1;
// min
template <typename T>
struct Min_Monoid {
using V = T;
static constexpr V merge(const V &a, const V &b) { return min(a, b); };
static const V id;
};
template <typename T>
constexpr T Min_Monoid<T>::id = numeric_limits<T>::max() / 2;
// max
template <typename T>
struct Max_Monoid {
using V = T;
static constexpr V merge(V a, V b) { return max(a, b); };
static const V id;
};
template <typename T>
constexpr T Max_Monoid<T>::id = -(numeric_limits<T>::max() / 2);
//
template <typename T>
struct Update_Monoid {
using V = T;
static constexpr V merge(const V &a, const V &b) {
if (a == id) return b;
if (b == id) return a;
return b;
}
static const V id;
};
template <typename T>
constexpr T Update_Monoid<T>::id = numeric_limits<T>::max();
// min count (TS)
template <typename T, typename S>
struct Min_Count_Monoid {
using V = pair<T, S>;
static constexpr V merge(const V &a, const V &b) {
if (a.first < b.first) return a;
if (a.first > b.first) return b;
return V(a.first, a.second + b.second);
}
static const V id;
};
template <typename T, typename S>
constexpr pair<T, S> Min_Count_Monoid<T, S>::id = make_pair(numeric_limits<T>::max() / 2, 0);
// max count (TS)
template <typename T, typename S>
struct Max_Count_Monoid {
using V = pair<T, S>;
static constexpr V merge(const V &a, const V &b) {
if (a.first > b.first) return a;
if (a.first < b.first) return b;
return V(a.first, a.second + b.second);
}
static const V id;
};
template <typename T, typename S>
constexpr pair<T, S> Max_Count_Monoid<T, S>::id = make_pair(-(numeric_limits<T>::max() / 2), 0);
// ax+b ()
template <typename T>
struct Affine_Monoid {
using V = pair<T, T>;
static constexpr V merge(const V &a, const V &b) { return V(a.first * b.first, a.second * b.first + b.second); };
static const V id;
};
template <typename T>
const pair<T, T> Affine_Monoid<T>::id = make_pair(1, 0);
//
template <typename Monoid_1, typename Monoid_2>
struct Cartesian_Product_Monoid {
using V1 = typename Monoid_1::V;
using V2 = typename Monoid_2::V;
using V = pair<V1, V2>;
static constexpr V merge(const V &a, const V &b) { return V(Monoid_1::merge(a.first, b.first), Monoid_2::merge(a.second, b.second)); }
static const V id;
};
template <typename Monoid_1, typename Monoid_2>
const pair<typename Monoid_1::V, typename Monoid_2::V> Cartesian_Product_Monoid<Monoid_1, Monoid_2>::id = make_pair(Monoid_1::id, Monoid_2::id);
// range add range min
template <typename T>
struct Min_Plus_Acted_Monoid {
using Monoid = Min_Monoid<T>;
using Operator = Plus_Monoid<T>;
using M = T;
using O = T;
static constexpr M merge(const M &a, const O &b) { return a + b; };
};
// range add range max
template <typename T>
struct Max_Plus_Acted_Monoid {
using Monoid = Max_Monoid<T>;
using Operator = Plus_Monoid<T>;
using M = T;
using O = T;
static constexpr M merge(const M &a, const O &b) { return a + b; };
};
// range add range min count (TS)
template <typename T, typename S>
struct Min_Count_Add_Acted_Monoid {
using Monoid = Min_Count_Monoid<T, S>;
using Operator = Plus_Monoid<T>;
using M = pair<T, S>;
using O = T;
static constexpr M merge(const M &a, const O &b) { return make_pair(a.first + b, a.second); };
};
// range add range max count (TS)
template <typename T, typename S>
struct Max_Count_Add_Acted_Monoid {
using Monoid = Max_Count_Monoid<T, S>;
using Operator = Plus_Monoid<T>;
using M = pair<T, S>;
using O = T;
static constexpr M merge(const M &a, const O &b) { return make_pair(a.first + b, a.second); };
};
// range add range sum
template <typename T>
struct Plus_Plus_Acted_Monoid {
using Monoid = Cartesian_Product_Monoid<Plus_Monoid<T>, Plus_Monoid<int>>;
using Operator = Plus_Monoid<T>;
using M = pair<T, int>;
using O = T;
static constexpr M merge(const M &a, const O &b) { return M(a.first + b * a.second, a.second); }
};
// range update range sum
template <typename T>
struct Plus_Update_Acted_Monoid {
using Monoid = Cartesian_Product_Monoid<Plus_Monoid<T>, Plus_Monoid<int>>;
using Operator = Update_Monoid<T>;
using M = pair<T, int>;
using O = T;
static constexpr M merge(const M &a, const O &b) { return b == Operator::id ? a : M(b * a.second, a.second); }
};
// range update range min
template <typename T>
struct Min_Update_Acted_Monoid {
using Monoid = Min_Monoid<T>;
using Operator = Update_Monoid<T>;
using M = T;
using O = T;
static constexpr M merge(const M &a, const O &b) { return b == Operator::id ? a : b; }
};
// range update range max
template <typename T>
struct Max_Update_Acted_Monoid {
using Monoid = Max_Monoid<T>;
using Operator = Update_Monoid<T>;
using M = T;
using O = T;
static constexpr M merge(const M &a, const O &b) { return b == Operator::id ? a : b; }
};
// range affine range sum
template <typename T>
struct Plus_Affine_Acted_Monoid {
using Monoid = Cartesian_Product_Monoid<Plus_Monoid<T>, Plus_Monoid<T>>;
using Operator = Affine_Monoid<T>;
using M = pair<T, T>;
using O = pair<T, T>;
static constexpr M merge(const M &a, const O &b) { return M(b.first * a.first + b.second * a.second, a.second); };
};
void solve() {
int N, Q;
cin >> N >> Q;
vector<vector<int>> es(N);
rep(i, N - 1) {
int u, v;
cin >> u >> v;
u--, v--;
es[u].eb(v), es[v].eb(u);
}
vector<int> par(N, -1);
vector<int> si(N, 1);
vector<int> id(N, -1), l1(N, -1), r1(N, -1), l2(N, -1), r2(N, -1);
auto dfs = [&](int now, int pre, auto &&dfs) -> int {
par[now] = pre;
each(e, es[now]) {
if (e == pre) continue;
si[now] += dfs(e, now, dfs);
}
return si[now];
};
dfs(0, -1, dfs);
deque<int> que;
que.push_front(0);
int t = 0;
id[0] = t++;
while (!empty(que)) {
int now = que.front();
que.pop_front();
vector<int> v;
each(e, es[now]) {
if (e == par[now]) continue;
v.eb(e);
id[e] = t++;
}
reverse(all(v));
each(e, v) que.push_front(e);
}
rep(now, N) {
vector<int> v;
each(e, es[now]) {
if (e == par[now]) continue;
v.eb(e);
}
// cout << "! " << now << ' ';
// print(v);
if (!empty(v)) {
l1[now] = id[v[0]];
r1[now] = id[v.back()] + 1;
l2[now] = id[v[0]];
r2[now] = l2[now] + si[now] - 1;
}
}
// print(id), print(l1), print(r1), print(r2);
vector<mint> x(N);
rep(i, N) cin >> x[i];
Dual_Segment_Tree<Affine_Monoid<mint>> seg(N);
while (Q--) {
int t, v;
cin >> t >> v;
v--;
if (t == 1) {
auto [a, b] = seg[id[v]];
cout << a * x[v] + b << '\n';
} else if (t == 2) {
int K;
mint a, b;
cin >> K >> a >> b;
if (l1[v] != -1) {
seg.update(l1[v], r1[v], {a, b}); //
}
seg.update(id[v], id[v] + 1, {a, b});
if (par[v] != -1) {
int u = par[v];
seg.update(id[u], id[u] + 1, {a, b});
}
} else {
mint a, b;
cin >> a >> b;
if (l2[v] != -1) {
seg.update(l2[v], r2[v], {a, b}); //
}
seg.update(id[v], id[v] + 1, {a, b});
}
}
}
int main() {
int T = 1;
// cin >> T;
while (T--) solve();
}
הההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההה
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
0