結果
問題 | No.2340 Triple Tree Query (Easy) |
ユーザー | tokusakurai |
提出日時 | 2023-06-02 23:49:59 |
言語 | C++17 (gcc 12.3.0 + boost 1.83.0) |
結果 |
AC
|
実行時間 | 208 ms / 5,000 ms |
コード長 | 15,359 bytes |
コンパイル時間 | 2,667 ms |
コンパイル使用メモリ | 224,136 KB |
実行使用メモリ | 18,176 KB |
最終ジャッジ日時 | 2024-06-09 02:21:42 |
合計ジャッジ時間 | 10,428 ms |
ジャッジサーバーID (参考情報) |
judge3 / judge2 |
(要ログイン)
テストケース
テストケース表示入力 | 結果 | 実行時間 実行使用メモリ |
---|---|---|
testcase_00 | AC | 2 ms
6,816 KB |
testcase_01 | AC | 5 ms
6,816 KB |
testcase_02 | AC | 5 ms
6,816 KB |
testcase_03 | AC | 5 ms
6,944 KB |
testcase_04 | AC | 4 ms
6,944 KB |
testcase_05 | AC | 5 ms
6,940 KB |
testcase_06 | AC | 160 ms
13,952 KB |
testcase_07 | AC | 186 ms
13,824 KB |
testcase_08 | AC | 145 ms
13,952 KB |
testcase_09 | AC | 150 ms
13,824 KB |
testcase_10 | AC | 154 ms
14,024 KB |
testcase_11 | AC | 145 ms
13,952 KB |
testcase_12 | AC | 149 ms
13,952 KB |
testcase_13 | AC | 145 ms
13,952 KB |
testcase_14 | AC | 148 ms
13,952 KB |
testcase_15 | AC | 151 ms
13,952 KB |
testcase_16 | AC | 178 ms
18,176 KB |
testcase_17 | AC | 208 ms
16,768 KB |
testcase_18 | AC | 186 ms
16,512 KB |
testcase_19 | AC | 201 ms
17,792 KB |
testcase_20 | AC | 197 ms
16,272 KB |
testcase_21 | AC | 121 ms
14,880 KB |
testcase_22 | AC | 113 ms
15,008 KB |
testcase_23 | AC | 122 ms
15,012 KB |
testcase_24 | AC | 203 ms
14,080 KB |
testcase_25 | AC | 186 ms
13,952 KB |
testcase_26 | AC | 204 ms
13,952 KB |
testcase_27 | AC | 189 ms
13,824 KB |
testcase_28 | AC | 187 ms
13,952 KB |
testcase_29 | AC | 119 ms
14,872 KB |
testcase_30 | AC | 132 ms
15,004 KB |
testcase_31 | AC | 120 ms
14,872 KB |
testcase_32 | AC | 148 ms
14,336 KB |
testcase_33 | AC | 142 ms
14,208 KB |
testcase_34 | AC | 145 ms
14,336 KB |
testcase_35 | AC | 134 ms
14,272 KB |
testcase_36 | AC | 146 ms
14,336 KB |
ソースコード
#include <bits/stdc++.h> using namespace std; #define rep(i, n) for (int i = 0; i < (n); i++) #define per(i, n) for (int i = (n)-1; i >= 0; i--) #define rep2(i, l, r) for (int i = (l); i < (r); i++) #define per2(i, l, r) for (int i = (r)-1; i >= (l); i--) #define each(e, v) for (auto &e : v) #define MM << " " << #define pb push_back #define eb emplace_back #define all(x) begin(x), end(x) #define rall(x) rbegin(x), rend(x) #define sz(x) (int)x.size() using ll = long long; using pii = pair<int, int>; using pil = pair<int, ll>; using pli = pair<ll, int>; using pll = pair<ll, ll>; template <typename T> using minheap = priority_queue<T, vector<T>, greater<T>>; template <typename T> using maxheap = priority_queue<T>; template <typename T> bool chmax(T &x, const T &y) { return (x < y) ? (x = y, true) : false; } template <typename T> bool chmin(T &x, const T &y) { return (x > y) ? (x = y, true) : false; } template <typename T> int flg(T x, int i) { return (x >> i) & 1; } int pct(int x) { return __builtin_popcount(x); } int pct(ll x) { return __builtin_popcountll(x); } int topbit(int x) { return (x == 0 ? -1 : 31 - __builtin_clz(x)); } int topbit(ll x) { return (x == 0 ? -1 : 63 - __builtin_clzll(x)); } int botbit(int x) { return (x == 0 ? -1 : __builtin_ctz(x)); } int botbit(ll x) { return (x == 0 ? -1 : __builtin_ctzll(x)); } template <typename T> void print(const vector<T> &v, T x = 0) { int n = v.size(); for (int i = 0; i < n; i++) cout << v[i] + x << (i == n - 1 ? '\n' : ' '); if (v.empty()) cout << '\n'; } template <typename T> void printn(const vector<T> &v, T x = 0) { int n = v.size(); for (int i = 0; i < n; i++) cout << v[i] + x << '\n'; } template <typename T> int lb(const vector<T> &v, T x) { return lower_bound(begin(v), end(v), x) - begin(v); } template <typename T> int ub(const vector<T> &v, T x) { return upper_bound(begin(v), end(v), x) - begin(v); } template <typename T> void rearrange(vector<T> &v) { sort(begin(v), end(v)); v.erase(unique(begin(v), end(v)), end(v)); } template <typename T> vector<int> id_sort(const vector<T> &v, bool greater = false) { int n = v.size(); vector<int> ret(n); iota(begin(ret), end(ret), 0); sort(begin(ret), end(ret), [&](int i, int j) { return greater ? v[i] > v[j] : v[i] < v[j]; }); return ret; } template <typename T> void reorder(vector<T> &a, const vector<int> &ord) { int n = a.size(); vector<T> b(n); for (int i = 0; i < n; i++) b[i] = a[ord[i]]; swap(a, b); } template <typename T> T floor(T x, T y) { assert(y != 0); if (y < 0) x = -x, y = -y; return (x >= 0 ? x / y : (x - y + 1) / y); } template <typename T> T ceil(T x, T y) { assert(y != 0); if (y < 0) x = -x, y = -y; return (x >= 0 ? (x + y - 1) / y : x / y); } template <typename S, typename T> pair<S, T> operator+(const pair<S, T> &p, const pair<S, T> &q) { return make_pair(p.first + q.first, p.second + q.second); } template <typename S, typename T> pair<S, T> operator-(const pair<S, T> &p, const pair<S, T> &q) { return make_pair(p.first - q.first, p.second - q.second); } template <typename S, typename T> istream &operator>>(istream &is, pair<S, T> &p) { S a; T b; is >> a >> b; p = make_pair(a, b); return is; } template <typename S, typename T> ostream &operator<<(ostream &os, const pair<S, T> &p) { return os << p.first << ' ' << p.second; } struct io_setup { io_setup() { ios_base::sync_with_stdio(false); cin.tie(NULL); cout << fixed << setprecision(15); } } io_setup; constexpr int inf = (1 << 30) - 1; constexpr ll INF = (1LL << 60) - 1; // constexpr int MOD = 1000000007; constexpr int MOD = 998244353; template <int mod> struct Mod_Int { int x; Mod_Int() : x(0) {} Mod_Int(long long y) : x(y >= 0 ? y % mod : (mod - (-y) % mod) % mod) {} static int get_mod() { return mod; } Mod_Int &operator+=(const Mod_Int &p) { if ((x += p.x) >= mod) x -= mod; return *this; } Mod_Int &operator-=(const Mod_Int &p) { if ((x += mod - p.x) >= mod) x -= mod; return *this; } Mod_Int &operator*=(const Mod_Int &p) { x = (int)(1LL * x * p.x % mod); return *this; } Mod_Int &operator/=(const Mod_Int &p) { *this *= p.inverse(); return *this; } Mod_Int &operator++() { return *this += Mod_Int(1); } Mod_Int operator++(int) { Mod_Int tmp = *this; ++*this; return tmp; } Mod_Int &operator--() { return *this -= Mod_Int(1); } Mod_Int operator--(int) { Mod_Int tmp = *this; --*this; return tmp; } Mod_Int operator-() const { return Mod_Int(-x); } Mod_Int operator+(const Mod_Int &p) const { return Mod_Int(*this) += p; } Mod_Int operator-(const Mod_Int &p) const { return Mod_Int(*this) -= p; } Mod_Int operator*(const Mod_Int &p) const { return Mod_Int(*this) *= p; } Mod_Int operator/(const Mod_Int &p) const { return Mod_Int(*this) /= p; } bool operator==(const Mod_Int &p) const { return x == p.x; } bool operator!=(const Mod_Int &p) const { return x != p.x; } Mod_Int inverse() const { assert(*this != Mod_Int(0)); return pow(mod - 2); } Mod_Int pow(long long k) const { Mod_Int now = *this, ret = 1; for (; k > 0; k >>= 1, now *= now) { if (k & 1) ret *= now; } return ret; } friend ostream &operator<<(ostream &os, const Mod_Int &p) { return os << p.x; } friend istream &operator>>(istream &is, Mod_Int &p) { long long a; is >> a; p = Mod_Int<mod>(a); return is; } }; using mint = Mod_Int<MOD>; template <typename Operator> struct Dual_Segment_Tree { using O = typename Operator::V; int n, m, height; vector<O> lazy; Dual_Segment_Tree(int n) : n(n) { m = 1, height = 0; while (m < n) m <<= 1, height++; lazy.assign(2 * m, Operator::id); } inline void eval(int i) { if (i < m && lazy[i] != Operator::id) { lazy[2 * i] = Operator::merge(lazy[2 * i], lazy[i]); lazy[2 * i + 1] = Operator::merge(lazy[2 * i + 1], lazy[i]); lazy[i] = Operator::id; } } inline void thrust(int i) { for (int j = height; j > 0; j--) eval(i >> j); } void update(int l, int r, const O &x) { l = max(l, 0), r = min(r, n); if (l >= r) return; l += m, r += m; thrust(l), thrust(r - 1); while (l < r) { if (l & 1) lazy[l] = Operator::merge(lazy[l], x), l++; if (r & 1) r--, lazy[r] = Operator::merge(lazy[r], x); l >>= 1, r >>= 1; } } O get(int i) { thrust(i + m); return lazy[i + m]; } O operator[](int i) { return get(i); } }; // sum template <typename T> struct Plus_Monoid { using V = T; static constexpr V merge(const V &a, const V &b) { return a + b; }; static const V id; }; template <typename T> const T Plus_Monoid<T>::id = 0; // prod template <typename T> struct Product_Monoid { using V = T; static constexpr V merge(const V &a, const V &b) { return a * b; }; static const V id; }; template <typename T> const T Product_Monoid<T>::id = 1; // min template <typename T> struct Min_Monoid { using V = T; static constexpr V merge(const V &a, const V &b) { return min(a, b); }; static const V id; }; template <typename T> constexpr T Min_Monoid<T>::id = numeric_limits<T>::max() / 2; // max template <typename T> struct Max_Monoid { using V = T; static constexpr V merge(V a, V b) { return max(a, b); }; static const V id; }; template <typename T> constexpr T Max_Monoid<T>::id = -(numeric_limits<T>::max() / 2); // 代入 template <typename T> struct Update_Monoid { using V = T; static constexpr V merge(const V &a, const V &b) { if (a == id) return b; if (b == id) return a; return b; } static const V id; }; template <typename T> constexpr T Update_Monoid<T>::id = numeric_limits<T>::max(); // min count (T:最大値の型、S:個数の型) template <typename T, typename S> struct Min_Count_Monoid { using V = pair<T, S>; static constexpr V merge(const V &a, const V &b) { if (a.first < b.first) return a; if (a.first > b.first) return b; return V(a.first, a.second + b.second); } static const V id; }; template <typename T, typename S> constexpr pair<T, S> Min_Count_Monoid<T, S>::id = make_pair(numeric_limits<T>::max() / 2, 0); // max count (T:最大値の型、S:個数の型) template <typename T, typename S> struct Max_Count_Monoid { using V = pair<T, S>; static constexpr V merge(const V &a, const V &b) { if (a.first > b.first) return a; if (a.first < b.first) return b; return V(a.first, a.second + b.second); } static const V id; }; template <typename T, typename S> constexpr pair<T, S> Max_Count_Monoid<T, S>::id = make_pair(-(numeric_limits<T>::max() / 2), 0); // 一次関数 ax+b の合成 (左から順に作用) template <typename T> struct Affine_Monoid { using V = pair<T, T>; static constexpr V merge(const V &a, const V &b) { return V(a.first * b.first, a.second * b.first + b.second); }; static const V id; }; template <typename T> const pair<T, T> Affine_Monoid<T>::id = make_pair(1, 0); // モノイドの直積 template <typename Monoid_1, typename Monoid_2> struct Cartesian_Product_Monoid { using V1 = typename Monoid_1::V; using V2 = typename Monoid_2::V; using V = pair<V1, V2>; static constexpr V merge(const V &a, const V &b) { return V(Monoid_1::merge(a.first, b.first), Monoid_2::merge(a.second, b.second)); } static const V id; }; template <typename Monoid_1, typename Monoid_2> const pair<typename Monoid_1::V, typename Monoid_2::V> Cartesian_Product_Monoid<Monoid_1, Monoid_2>::id = make_pair(Monoid_1::id, Monoid_2::id); // range add range min template <typename T> struct Min_Plus_Acted_Monoid { using Monoid = Min_Monoid<T>; using Operator = Plus_Monoid<T>; using M = T; using O = T; static constexpr M merge(const M &a, const O &b) { return a + b; }; }; // range add range max template <typename T> struct Max_Plus_Acted_Monoid { using Monoid = Max_Monoid<T>; using Operator = Plus_Monoid<T>; using M = T; using O = T; static constexpr M merge(const M &a, const O &b) { return a + b; }; }; // range add range min count (T:最小値の型、S:個数の型) template <typename T, typename S> struct Min_Count_Add_Acted_Monoid { using Monoid = Min_Count_Monoid<T, S>; using Operator = Plus_Monoid<T>; using M = pair<T, S>; using O = T; static constexpr M merge(const M &a, const O &b) { return make_pair(a.first + b, a.second); }; }; // range add range max count (T:最大値の型、S:個数の型) template <typename T, typename S> struct Max_Count_Add_Acted_Monoid { using Monoid = Max_Count_Monoid<T, S>; using Operator = Plus_Monoid<T>; using M = pair<T, S>; using O = T; static constexpr M merge(const M &a, const O &b) { return make_pair(a.first + b, a.second); }; }; // range add range sum template <typename T> struct Plus_Plus_Acted_Monoid { using Monoid = Cartesian_Product_Monoid<Plus_Monoid<T>, Plus_Monoid<int>>; using Operator = Plus_Monoid<T>; using M = pair<T, int>; using O = T; static constexpr M merge(const M &a, const O &b) { return M(a.first + b * a.second, a.second); } }; // range update range sum template <typename T> struct Plus_Update_Acted_Monoid { using Monoid = Cartesian_Product_Monoid<Plus_Monoid<T>, Plus_Monoid<int>>; using Operator = Update_Monoid<T>; using M = pair<T, int>; using O = T; static constexpr M merge(const M &a, const O &b) { return b == Operator::id ? a : M(b * a.second, a.second); } }; // range update range min template <typename T> struct Min_Update_Acted_Monoid { using Monoid = Min_Monoid<T>; using Operator = Update_Monoid<T>; using M = T; using O = T; static constexpr M merge(const M &a, const O &b) { return b == Operator::id ? a : b; } }; // range update range max template <typename T> struct Max_Update_Acted_Monoid { using Monoid = Max_Monoid<T>; using Operator = Update_Monoid<T>; using M = T; using O = T; static constexpr M merge(const M &a, const O &b) { return b == Operator::id ? a : b; } }; // range affine range sum template <typename T> struct Plus_Affine_Acted_Monoid { using Monoid = Cartesian_Product_Monoid<Plus_Monoid<T>, Plus_Monoid<T>>; using Operator = Affine_Monoid<T>; using M = pair<T, T>; using O = pair<T, T>; static constexpr M merge(const M &a, const O &b) { return M(b.first * a.first + b.second * a.second, a.second); }; }; void solve() { int N, Q; cin >> N >> Q; vector<vector<int>> es(N); rep(i, N - 1) { int u, v; cin >> u >> v; u--, v--; es[u].eb(v), es[v].eb(u); } vector<int> par(N, -1); vector<int> si(N, 1); vector<int> id(N, -1), l1(N, -1), r1(N, -1), l2(N, -1), r2(N, -1); auto dfs = [&](int now, int pre, auto &&dfs) -> int { par[now] = pre; each(e, es[now]) { if (e == pre) continue; si[now] += dfs(e, now, dfs); } return si[now]; }; dfs(0, -1, dfs); deque<int> que; que.push_front(0); int t = 0; id[0] = t++; while (!empty(que)) { int now = que.front(); que.pop_front(); vector<int> v; each(e, es[now]) { if (e == par[now]) continue; v.eb(e); id[e] = t++; } reverse(all(v)); each(e, v) que.push_front(e); } rep(now, N) { vector<int> v; each(e, es[now]) { if (e == par[now]) continue; v.eb(e); } // cout << "! " << now << ' '; // print(v); if (!empty(v)) { l1[now] = id[v[0]]; r1[now] = id[v.back()] + 1; l2[now] = id[v[0]]; r2[now] = l2[now] + si[now] - 1; } } // print(id), print(l1), print(r1), print(r2); vector<mint> x(N); rep(i, N) cin >> x[i]; Dual_Segment_Tree<Affine_Monoid<mint>> seg(N); while (Q--) { int t, v; cin >> t >> v; v--; if (t == 1) { auto [a, b] = seg[id[v]]; cout << a * x[v] + b << '\n'; } else if (t == 2) { int K; mint a, b; cin >> K >> a >> b; if (l1[v] != -1) { seg.update(l1[v], r1[v], {a, b}); // } seg.update(id[v], id[v] + 1, {a, b}); if (par[v] != -1) { int u = par[v]; seg.update(id[u], id[u] + 1, {a, b}); } } else { mint a, b; cin >> a >> b; if (l2[v] != -1) { seg.update(l2[v], r2[v], {a, b}); // } seg.update(id[v], id[v] + 1, {a, b}); } } } int main() { int T = 1; // cin >> T; while (T--) solve(); }