結果

問題 No.2336 Do you like typical problems?
ユーザー t98slidert98slider
提出日時 2023-06-03 00:05:51
言語 C++14
(gcc 13.3.0 + boost 1.87.0)
結果
TLE  
(最新)
AC  
(最初)
実行時間 -
コード長 9,614 bytes
コンパイル時間 2,119 ms
コンパイル使用メモリ 188,232 KB
実行使用メモリ 90,380 KB
最終ジャッジ日時 2024-12-29 01:04:45
合計ジャッジ時間 16,256 ms
ジャッジサーバーID
(参考情報)
judge4 / judge2
このコードへのチャレンジ
(要ログイン)

テストケース

テストケース表示
入力 結果 実行時間
実行使用メモリ
testcase_00 AC 2 ms
6,820 KB
testcase_01 AC 2 ms
6,820 KB
testcase_02 AC 2 ms
6,816 KB
testcase_03 AC 2 ms
6,816 KB
testcase_04 AC 2 ms
6,816 KB
testcase_05 AC 2 ms
6,816 KB
testcase_06 AC 2 ms
6,820 KB
testcase_07 AC 2 ms
6,820 KB
testcase_08 AC 13 ms
6,820 KB
testcase_09 AC 13 ms
6,816 KB
testcase_10 AC 13 ms
6,816 KB
testcase_11 AC 13 ms
6,816 KB
testcase_12 AC 14 ms
6,820 KB
testcase_13 TLE -
testcase_14 TLE -
testcase_15 TLE -
testcase_16 TLE -
testcase_17 TLE -
testcase_18 AC 91 ms
9,344 KB
testcase_19 AC 140 ms
9,472 KB
testcase_20 AC 1,322 ms
51,120 KB
権限があれば一括ダウンロードができます

ソースコード

diff #

#include <bits/stdc++.h>
using namespace std;
using ll = long long;

template<const unsigned int MOD> struct prime_modint {
    using mint = prime_modint;
    unsigned int v;
    prime_modint() : v(0) {}
    prime_modint(unsigned int a) { a %= MOD; v = a; }
    prime_modint(unsigned long long a) { a %= MOD; v = a; }
    prime_modint(int a) { a %= (int)(MOD); if(a < 0)a += MOD; v = a; }
    prime_modint(long long a) { a %= (int)(MOD); if(a < 0)a += MOD; v = a; }
    static constexpr int mod() { return MOD; }
    mint& operator++() {v++; if(v == MOD)v = 0; return *this;}
    mint& operator--() {if(v == 0)v = MOD; v--; return *this;}
    mint operator++(int) { mint result = *this; ++*this; return result; }
    mint operator--(int) { mint result = *this; --*this; return result; }
    mint& operator+=(const mint& rhs) { v += rhs.v; if(v >= MOD) v -= MOD; return *this; }
    mint& operator-=(const mint& rhs) { if(v < rhs.v) v += MOD; v -= rhs.v; return *this; }
    mint& operator*=(const mint& rhs) {
        v = (unsigned int)((unsigned long long)(v) * rhs.v % MOD);
        return *this;
    }
    mint& operator/=(const mint& rhs) { return *this = *this * rhs.inv(); }
    mint operator+() const { return *this; }
    mint operator-() const { return mint() - *this; }
    mint pow(long long n) const {
        assert(0 <= n);
        mint r = 1, x = *this;
        while (n) {
            if (n & 1) r *= x;
            x *= x;
            n >>= 1;
        }
        return r;
    }
    mint inv() const { assert(v); return pow(MOD - 2); }
    friend mint operator+(const mint& lhs, const mint& rhs) { return mint(lhs) += rhs; }
    friend mint operator-(const mint& lhs, const mint& rhs) { return mint(lhs) -= rhs; }
    friend mint operator*(const mint& lhs, const mint& rhs) { return mint(lhs) *= rhs; }
    friend mint operator/(const mint& lhs, const mint& rhs) { return mint(lhs) /= rhs; }
    friend bool operator==(const mint& lhs, const mint& rhs) { return (lhs.v == rhs.v); }
    friend bool operator!=(const mint& lhs, const mint& rhs) { return (lhs.v != rhs.v); }
    friend std::ostream& operator << (std::ostream &os, const mint& rhs) noexcept { return os << rhs.v; }
};
//using mint = prime_modint<1000000007>;
using mint = prime_modint<998244353>;


template <class S,
            S (*op)(S, S),
            S (*e)(),
            class F,
            S (*mapping)(F, S),
            F (*composition)(F, F),
            F (*id)()>
struct lazy_segtree {
    public:
        lazy_segtree() : lazy_segtree(0) {}
        lazy_segtree(int n) : lazy_segtree(std::vector<S>(n, e())) {}
        lazy_segtree(const std::vector<S>& v) : _n(int(v.size())) {
        log = ceil_pow2(_n);
        size = 1 << log;
        d = std::vector<S>(2 * size, e());
        lz = std::vector<F>(size, id());
        for (int i = 0; i < _n; i++) d[size + i] = v[i];
        for (int i = size - 1; i >= 1; i--) {
                update(i);
            }
        }
        void set(int p, S x) {
            assert(0 <= p && p < _n);
            p += size;
            for (int i = log; i >= 1; i--) push(p >> i);
            d[p] = x;
            for (int i = 1; i <= log; i++) update(p >> i);
        }
        S get(int p) {
            assert(0 <= p && p < _n);
            p += size;
            for (int i = log; i >= 1; i--) push(p >> i);
            return d[p];
        }
        S prod(int l, int r) {
            assert(0 <= l && l <= r && r <= _n);
            if (l == r) return e();
            l += size;
            r += size;
            for (int i = log; i >= 1; i--) {
                if (((l >> i) << i) != l) push(l >> i);
                if (((r >> i) << i) != r) push(r >> i);
            }
        S sml = e(), smr = e();
            while (l < r) {
                if (l & 1) sml = op(sml, d[l++]);
                if (r & 1) smr = op(d[--r], smr);
                l >>= 1;
                r >>= 1;
            }
            return op(sml, smr);
        }
        S all_prod() { return d[1]; }
        void apply(int p, F f) {
            assert(0 <= p && p < _n);
            p += size;
            for (int i = log; i >= 1; i--) push(p >> i);
            d[p] = mapping(f, d[p]);
            for (int i = 1; i <= log; i++) update(p >> i);
        }
        void apply(int l, int r, F f) {
            assert(0 <= l && l <= r && r <= _n);
            if (l == r) return;
            l += size;
            r += size;
            for (int i = log; i >= 1; i--) {
                if (((l >> i) << i) != l) push(l >> i);
                if (((r >> i) << i) != r) push((r - 1) >> i);
            }
            {
                int l2 = l, r2 = r;
                while (l < r) {
                    if (l & 1) all_apply(l++, f);
                    if (r & 1) all_apply(--r, f);
                    l >>= 1;
                    r >>= 1;
                }
                l = l2;
                r = r2;
            }
            for (int i = 1; i <= log; i++) {
                if (((l >> i) << i) != l) update(l >> i);
                if (((r >> i) << i) != r) update((r - 1) >> i);
            }
            }
        template <bool (*g)(S)> int max_right(int l) {
            return max_right(l, [](S x) { return g(x); });
        }
        template <class G> int max_right(int l, G g) {
            assert(0 <= l && l <= _n);
            assert(g(e()));
            if (l == _n) return _n;
            l += size;
            for (int i = log; i >= 1; i--) push(l >> i);
            S sm = e();
            do {
                while (l % 2 == 0) l >>= 1;
                if (!g(op(sm, d[l]))) {
                    while (l < size) {
                        push(l);
                        l = (2 * l);
                        if (g(op(sm, d[l]))) {
                            sm = op(sm, d[l]);
                            l++;
                        }
                    }
                    return l - size;
                }
                sm = op(sm, d[l]);
                l++;
            } while ((l & -l) != l);
            return _n;
        }
        template <bool (*g)(S)> int min_left(int r) {
            return min_left(r, [](S x) { return g(x); });
        }
        template <class G> int min_left(int r, G g) {
            assert(0 <= r && r <= _n);
            assert(g(e()));
            if (r == 0) return 0;
            r += size;
            for (int i = log; i >= 1; i--) push((r - 1) >> i);
            S sm = e();
            do {
                r--;
                while (r > 1 && (r % 2)) r >>= 1;
                if (!g(op(d[r], sm))) {
                    while (r < size) {
                        push(r);
                        r = (2 * r + 1);
                        if (g(op(d[r], sm))) {
                            sm = op(d[r], sm);
                            r--;
                        }
                    }
                    return r + 1 - size;
                }
                sm = op(d[r], sm);
            } while ((r & -r) != r);
            return 0;
        }
    private:
        int _n, size, log;
        std::vector<S> d;
        std::vector<F> lz;
        void update(int k) { d[k] = op(d[2 * k], d[2 * k + 1]); }
        void all_apply(int k, F f) {
            d[k] = mapping(f, d[k]);
            if (k < size) lz[k] = composition(f, lz[k]);
        }
        void push(int k) {
            all_apply(2 * k, lz[k]);
            all_apply(2 * k + 1, lz[k]);
            lz[k] = id();
        }
        int ceil_pow2(int n) {
            int x = 0;
            while ((1U << x) < (unsigned int)(n)) x++;
            return x;
        }
};

using S = array<mint, 3>;
using F = array<mint, 3>;
S op(S lhs, S rhs){
    lhs[0] += rhs[0];
    lhs[1] += rhs[1];
    lhs[2] += rhs[2];
    return lhs;
}
S e(){
    S a{};
    return a;
}
S mapping(F f, S x){
    x[0] += f[0] * x[1] + f[1] * x[1] - f[2] * x[2];
    return x;
}
F composition(F f, F g){
    return F({f[0] + g[0], f[1] + g[1], f[2] + g[2]});
}
F id(){return F({0, 0, 0});}


int main(){
    ios::sync_with_stdio(false);
    cin.tie(0);
    int n;
    cin >> n;
    vector<pair<int,int>> a(n), b(n);
    vector<int> ca(3 * n);
    vector<mint> div(n);
    for(int i = 0; i < n; i++){
        int l, r;
        cin >> l >> r;
        a[i] = make_pair(l, r);
        ca[3 * i] = l;
        ca[3 * i + 1] = r;
        ca[3 * i + 2] = r + 1;
    }
    sort(ca.begin(), ca.end());
    ca.erase(unique(ca.begin(), ca.end()), ca.end());
    vector<S> tmp(ca.size());
    mint div2 = mint(1) / 2;
    for(int i = 0; i + 1 < ca.size(); i++){
        tmp[i][1] = ca[i + 1] - ca[i];
        tmp[i][2] = mint(ca[i + 1]) * (ca[i + 1] - 1) - mint(ca[i]) * (ca[i] - 1);
        tmp[i][2] *= div2;
    }
    lazy_segtree<S, op, e, F, mapping, composition, id> seg(tmp);
    mint ans;
    for(int i = 0; i < n; i++){
        int l, r;
        tie(l, r) = a[i];
        div[i] = mint(1) / (r - l + 1);
        l = lower_bound(ca.begin(), ca.end(), l) - ca.begin();
        r = lower_bound(ca.begin(), ca.end(), r) - ca.begin();
        ans += seg.prod(l, r + 1)[0] * div[i];
        seg.apply(l, r, {0, div[i] * a[i].second, div[i]});
        seg.apply(0, l, {1, 0, 0});
        b[i] = make_pair(l, r);
    }
    seg = lazy_segtree<S, op, e, F, mapping, composition, id>(tmp);
    for(int i = n - 1; i >= 0; i--){
        int l, r;
        tie(l, r) = b[i];
        ans += seg.prod(l, r + 1)[0] * div[i];
        seg.apply(l, r, {0, div[i] * a[i].second, div[i]});
        seg.apply(0, l, {1, 0, 0});
    }
    for(int i = 3; i <= n; i++) ans *= i;
    cout << ans << '\n';
}
0