結果

問題 No.2341 Triple Tree Query (Medium)
ユーザー tokusakuraitokusakurai
提出日時 2023-06-03 10:46:25
言語 C++17
(gcc 13.3.0 + boost 1.87.0)
結果
AC  
実行時間 228 ms / 5,000 ms
コード長 16,189 bytes
コンパイル時間 2,994 ms
コンパイル使用メモリ 222,856 KB
実行使用メモリ 24,320 KB
最終ジャッジ日時 2024-12-29 02:37:30
合計ジャッジ時間 12,685 ms
ジャッジサーバーID
(参考情報)
judge1 / judge3
このコードへのチャレンジ
(要ログイン)

テストケース

テストケース表示
入力 結果 実行時間
実行使用メモリ
testcase_00 AC 2 ms
5,248 KB
testcase_01 AC 2 ms
5,248 KB
testcase_02 AC 206 ms
15,232 KB
testcase_03 AC 214 ms
15,104 KB
testcase_04 AC 207 ms
15,104 KB
testcase_05 AC 215 ms
15,232 KB
testcase_06 AC 216 ms
15,232 KB
testcase_07 AC 201 ms
22,272 KB
testcase_08 AC 194 ms
21,248 KB
testcase_09 AC 194 ms
24,320 KB
testcase_10 AC 199 ms
22,528 KB
testcase_11 AC 197 ms
23,680 KB
testcase_12 AC 199 ms
20,864 KB
testcase_13 AC 195 ms
22,016 KB
testcase_14 AC 195 ms
21,632 KB
testcase_15 AC 194 ms
23,552 KB
testcase_16 AC 193 ms
20,352 KB
testcase_17 AC 125 ms
15,504 KB
testcase_18 AC 129 ms
15,628 KB
testcase_19 AC 133 ms
15,504 KB
testcase_20 AC 129 ms
15,500 KB
testcase_21 AC 133 ms
15,508 KB
testcase_22 AC 128 ms
15,504 KB
testcase_23 AC 135 ms
15,504 KB
testcase_24 AC 129 ms
15,504 KB
testcase_25 AC 226 ms
15,232 KB
testcase_26 AC 225 ms
15,232 KB
testcase_27 AC 222 ms
15,232 KB
testcase_28 AC 220 ms
15,104 KB
testcase_29 AC 228 ms
15,232 KB
testcase_30 AC 135 ms
15,400 KB
testcase_31 AC 138 ms
15,404 KB
testcase_32 AC 134 ms
15,276 KB
testcase_33 AC 171 ms
15,488 KB
testcase_34 AC 169 ms
15,360 KB
testcase_35 AC 175 ms
15,360 KB
testcase_36 AC 172 ms
15,360 KB
testcase_37 AC 171 ms
15,232 KB
権限があれば一括ダウンロードができます

ソースコード

diff #

#include <bits/stdc++.h>
using namespace std;
#define rep(i, n) for (int i = 0; i < (n); i++)
#define per(i, n) for (int i = (n)-1; i >= 0; i--)
#define rep2(i, l, r) for (int i = (l); i < (r); i++)
#define per2(i, l, r) for (int i = (r)-1; i >= (l); i--)
#define each(e, v) for (auto &e : v)
#define MM << " " <<
#define pb push_back
#define eb emplace_back
#define all(x) begin(x), end(x)
#define rall(x) rbegin(x), rend(x)
#define sz(x) (int)x.size()
using ll = long long;
using pii = pair<int, int>;
using pil = pair<int, ll>;
using pli = pair<ll, int>;
using pll = pair<ll, ll>;

template <typename T>
using minheap = priority_queue<T, vector<T>, greater<T>>;

template <typename T>
using maxheap = priority_queue<T>;

template <typename T>
bool chmax(T &x, const T &y) {
    return (x < y) ? (x = y, true) : false;
}

template <typename T>
bool chmin(T &x, const T &y) {
    return (x > y) ? (x = y, true) : false;
}

template <typename T>
int flg(T x, int i) {
    return (x >> i) & 1;
}

int pct(int x) { return __builtin_popcount(x); }
int pct(ll x) { return __builtin_popcountll(x); }
int topbit(int x) { return (x == 0 ? -1 : 31 - __builtin_clz(x)); }
int topbit(ll x) { return (x == 0 ? -1 : 63 - __builtin_clzll(x)); }
int botbit(int x) { return (x == 0 ? -1 : __builtin_ctz(x)); }
int botbit(ll x) { return (x == 0 ? -1 : __builtin_ctzll(x)); }

template <typename T>
void print(const vector<T> &v, T x = 0) {
    int n = v.size();
    for (int i = 0; i < n; i++) cout << v[i] + x << (i == n - 1 ? '\n' : ' ');
    if (v.empty()) cout << '\n';
}

template <typename T>
void printn(const vector<T> &v, T x = 0) {
    int n = v.size();
    for (int i = 0; i < n; i++) cout << v[i] + x << '\n';
}

template <typename T>
int lb(const vector<T> &v, T x) {
    return lower_bound(begin(v), end(v), x) - begin(v);
}

template <typename T>
int ub(const vector<T> &v, T x) {
    return upper_bound(begin(v), end(v), x) - begin(v);
}

template <typename T>
void rearrange(vector<T> &v) {
    sort(begin(v), end(v));
    v.erase(unique(begin(v), end(v)), end(v));
}

template <typename T>
vector<int> id_sort(const vector<T> &v, bool greater = false) {
    int n = v.size();
    vector<int> ret(n);
    iota(begin(ret), end(ret), 0);
    sort(begin(ret), end(ret), [&](int i, int j) { return greater ? v[i] > v[j] : v[i] < v[j]; });
    return ret;
}

template <typename T>
void reorder(vector<T> &a, const vector<int> &ord) {
    int n = a.size();
    vector<T> b(n);
    for (int i = 0; i < n; i++) b[i] = a[ord[i]];
    swap(a, b);
}

template <typename T>
T floor(T x, T y) {
    assert(y != 0);
    if (y < 0) x = -x, y = -y;
    return (x >= 0 ? x / y : (x - y + 1) / y);
}

template <typename T>
T ceil(T x, T y) {
    assert(y != 0);
    if (y < 0) x = -x, y = -y;
    return (x >= 0 ? (x + y - 1) / y : x / y);
}

template <typename S, typename T>
pair<S, T> operator+(const pair<S, T> &p, const pair<S, T> &q) {
    return make_pair(p.first + q.first, p.second + q.second);
}

template <typename S, typename T>
pair<S, T> operator-(const pair<S, T> &p, const pair<S, T> &q) {
    return make_pair(p.first - q.first, p.second - q.second);
}

template <typename S, typename T>
istream &operator>>(istream &is, pair<S, T> &p) {
    S a;
    T b;
    is >> a >> b;
    p = make_pair(a, b);
    return is;
}

template <typename S, typename T>
ostream &operator<<(ostream &os, const pair<S, T> &p) {
    return os << p.first << ' ' << p.second;
}

struct io_setup {
    io_setup() {
        ios_base::sync_with_stdio(false);
        cin.tie(NULL);
        cout << fixed << setprecision(15);
    }
} io_setup;

constexpr int inf = (1 << 30) - 1;
constexpr ll INF = (1LL << 60) - 1;
// constexpr int MOD = 1000000007;
constexpr int MOD = 998244353;

template <int mod>
struct Mod_Int {
    int x;

    Mod_Int() : x(0) {}

    Mod_Int(long long y) : x(y >= 0 ? y % mod : (mod - (-y) % mod) % mod) {}

    static int get_mod() { return mod; }

    Mod_Int &operator+=(const Mod_Int &p) {
        if ((x += p.x) >= mod) x -= mod;
        return *this;
    }

    Mod_Int &operator-=(const Mod_Int &p) {
        if ((x += mod - p.x) >= mod) x -= mod;
        return *this;
    }

    Mod_Int &operator*=(const Mod_Int &p) {
        x = (int)(1LL * x * p.x % mod);
        return *this;
    }

    Mod_Int &operator/=(const Mod_Int &p) {
        *this *= p.inverse();
        return *this;
    }

    Mod_Int &operator++() { return *this += Mod_Int(1); }

    Mod_Int operator++(int) {
        Mod_Int tmp = *this;
        ++*this;
        return tmp;
    }

    Mod_Int &operator--() { return *this -= Mod_Int(1); }

    Mod_Int operator--(int) {
        Mod_Int tmp = *this;
        --*this;
        return tmp;
    }

    Mod_Int operator-() const { return Mod_Int(-x); }

    Mod_Int operator+(const Mod_Int &p) const { return Mod_Int(*this) += p; }

    Mod_Int operator-(const Mod_Int &p) const { return Mod_Int(*this) -= p; }

    Mod_Int operator*(const Mod_Int &p) const { return Mod_Int(*this) *= p; }

    Mod_Int operator/(const Mod_Int &p) const { return Mod_Int(*this) /= p; }

    bool operator==(const Mod_Int &p) const { return x == p.x; }

    bool operator!=(const Mod_Int &p) const { return x != p.x; }

    Mod_Int inverse() const {
        assert(*this != Mod_Int(0));
        return pow(mod - 2);
    }

    Mod_Int pow(long long k) const {
        Mod_Int now = *this, ret = 1;
        for (; k > 0; k >>= 1, now *= now) {
            if (k & 1) ret *= now;
        }
        return ret;
    }

    friend ostream &operator<<(ostream &os, const Mod_Int &p) { return os << p.x; }

    friend istream &operator>>(istream &is, Mod_Int &p) {
        long long a;
        is >> a;
        p = Mod_Int<mod>(a);
        return is;
    }
};

using mint = Mod_Int<MOD>;

template <typename Operator>
struct Dual_Segment_Tree {
    using O = typename Operator::V;
    int n, m, height;
    vector<O> lazy;

    Dual_Segment_Tree(int n) : n(n) {
        m = 1, height = 0;
        while (m < n) m <<= 1, height++;
        lazy.assign(2 * m, Operator::id);
    }

    inline void eval(int i) {
        if (i < m && lazy[i] != Operator::id) {
            lazy[2 * i] = Operator::merge(lazy[2 * i], lazy[i]);
            lazy[2 * i + 1] = Operator::merge(lazy[2 * i + 1], lazy[i]);
            lazy[i] = Operator::id;
        }
    }

    inline void thrust(int i) {
        for (int j = height; j > 0; j--) eval(i >> j);
    }

    void update(int l, int r, const O &x) {
        l = max(l, 0), r = min(r, n);
        if (l >= r) return;
        l += m, r += m;
        thrust(l), thrust(r - 1);
        while (l < r) {
            if (l & 1) lazy[l] = Operator::merge(lazy[l], x), l++;
            if (r & 1) r--, lazy[r] = Operator::merge(lazy[r], x);
            l >>= 1, r >>= 1;
        }
    }

    O get(int i) {
        thrust(i + m);
        return lazy[i + m];
    }

    O operator[](int i) { return get(i); }
};

// sum
template <typename T>
struct Plus_Monoid {
    using V = T;
    static constexpr V merge(const V &a, const V &b) { return a + b; };
    static const V id;
};

template <typename T>
const T Plus_Monoid<T>::id = 0;

// prod
template <typename T>
struct Product_Monoid {
    using V = T;
    static constexpr V merge(const V &a, const V &b) { return a * b; };
    static const V id;
};

template <typename T>
const T Product_Monoid<T>::id = 1;

// min
template <typename T>
struct Min_Monoid {
    using V = T;
    static constexpr V merge(const V &a, const V &b) { return min(a, b); };
    static const V id;
};

template <typename T>
constexpr T Min_Monoid<T>::id = numeric_limits<T>::max() / 2;

// max
template <typename T>
struct Max_Monoid {
    using V = T;
    static constexpr V merge(V a, V b) { return max(a, b); };
    static const V id;
};

template <typename T>
constexpr T Max_Monoid<T>::id = -(numeric_limits<T>::max() / 2);

// 代入
template <typename T>
struct Update_Monoid {
    using V = T;
    static constexpr V merge(const V &a, const V &b) {
        if (a == id) return b;
        if (b == id) return a;
        return b;
    }
    static const V id;
};

template <typename T>
constexpr T Update_Monoid<T>::id = numeric_limits<T>::max();

// min count (T:最大値の型、S:個数の型)
template <typename T, typename S>
struct Min_Count_Monoid {
    using V = pair<T, S>;
    static constexpr V merge(const V &a, const V &b) {
        if (a.first < b.first) return a;
        if (a.first > b.first) return b;
        return V(a.first, a.second + b.second);
    }
    static const V id;
};

template <typename T, typename S>
constexpr pair<T, S> Min_Count_Monoid<T, S>::id = make_pair(numeric_limits<T>::max() / 2, 0);

// max count (T:最大値の型、S:個数の型)
template <typename T, typename S>
struct Max_Count_Monoid {
    using V = pair<T, S>;
    static constexpr V merge(const V &a, const V &b) {
        if (a.first > b.first) return a;
        if (a.first < b.first) return b;
        return V(a.first, a.second + b.second);
    }
    static const V id;
};

template <typename T, typename S>
constexpr pair<T, S> Max_Count_Monoid<T, S>::id = make_pair(-(numeric_limits<T>::max() / 2), 0);

// 一次関数 ax+b の合成 (左から順に作用)
template <typename T>
struct Affine_Monoid {
    using V = pair<T, T>;
    static constexpr V merge(const V &a, const V &b) { return V(a.first * b.first, a.second * b.first + b.second); };
    static const V id;
};

template <typename T>
const pair<T, T> Affine_Monoid<T>::id = make_pair(1, 0);

// モノイドの直積
template <typename Monoid_1, typename Monoid_2>
struct Cartesian_Product_Monoid {
    using V1 = typename Monoid_1::V;
    using V2 = typename Monoid_2::V;
    using V = pair<V1, V2>;
    static constexpr V merge(const V &a, const V &b) { return V(Monoid_1::merge(a.first, b.first), Monoid_2::merge(a.second, b.second)); }
    static const V id;
};

template <typename Monoid_1, typename Monoid_2>
const pair<typename Monoid_1::V, typename Monoid_2::V> Cartesian_Product_Monoid<Monoid_1, Monoid_2>::id = make_pair(Monoid_1::id, Monoid_2::id);

// range add range min
template <typename T>
struct Min_Plus_Acted_Monoid {
    using Monoid = Min_Monoid<T>;
    using Operator = Plus_Monoid<T>;
    using M = T;
    using O = T;
    static constexpr M merge(const M &a, const O &b) { return a + b; };
};

// range add range max
template <typename T>
struct Max_Plus_Acted_Monoid {
    using Monoid = Max_Monoid<T>;
    using Operator = Plus_Monoid<T>;
    using M = T;
    using O = T;
    static constexpr M merge(const M &a, const O &b) { return a + b; };
};

// range add range min count (T:最小値の型、S:個数の型)
template <typename T, typename S>
struct Min_Count_Add_Acted_Monoid {
    using Monoid = Min_Count_Monoid<T, S>;
    using Operator = Plus_Monoid<T>;
    using M = pair<T, S>;
    using O = T;
    static constexpr M merge(const M &a, const O &b) { return make_pair(a.first + b, a.second); };
};

// range add range max count (T:最大値の型、S:個数の型)
template <typename T, typename S>
struct Max_Count_Add_Acted_Monoid {
    using Monoid = Max_Count_Monoid<T, S>;
    using Operator = Plus_Monoid<T>;
    using M = pair<T, S>;
    using O = T;
    static constexpr M merge(const M &a, const O &b) { return make_pair(a.first + b, a.second); };
};

// range add range sum
template <typename T>
struct Plus_Plus_Acted_Monoid {
    using Monoid = Cartesian_Product_Monoid<Plus_Monoid<T>, Plus_Monoid<int>>;
    using Operator = Plus_Monoid<T>;
    using M = pair<T, int>;
    using O = T;
    static constexpr M merge(const M &a, const O &b) { return M(a.first + b * a.second, a.second); }
};

// range update range sum
template <typename T>
struct Plus_Update_Acted_Monoid {
    using Monoid = Cartesian_Product_Monoid<Plus_Monoid<T>, Plus_Monoid<int>>;
    using Operator = Update_Monoid<T>;
    using M = pair<T, int>;
    using O = T;
    static constexpr M merge(const M &a, const O &b) { return b == Operator::id ? a : M(b * a.second, a.second); }
};

// range update range min
template <typename T>
struct Min_Update_Acted_Monoid {
    using Monoid = Min_Monoid<T>;
    using Operator = Update_Monoid<T>;
    using M = T;
    using O = T;
    static constexpr M merge(const M &a, const O &b) { return b == Operator::id ? a : b; }
};

// range update range max
template <typename T>
struct Max_Update_Acted_Monoid {
    using Monoid = Max_Monoid<T>;
    using Operator = Update_Monoid<T>;
    using M = T;
    using O = T;
    static constexpr M merge(const M &a, const O &b) { return b == Operator::id ? a : b; }
};

// range affine range sum
template <typename T>
struct Plus_Affine_Acted_Monoid {
    using Monoid = Cartesian_Product_Monoid<Plus_Monoid<T>, Plus_Monoid<T>>;
    using Operator = Affine_Monoid<T>;
    using M = pair<T, T>;
    using O = pair<T, T>;
    static constexpr M merge(const M &a, const O &b) { return M(b.first * a.first + b.second * a.second, a.second); };
};

void solve() {
    int N, Q;
    cin >> N >> Q;

    vector<vector<int>> es(N);
    rep(i, N - 1) {
        int u, v;
        cin >> u >> v;
        u--, v--;
        es[u].eb(v), es[v].eb(u);
    }

    vector<int> par(N, -1), si(N, 1), root(N, -1), depth(N, 0);
    vector<int> id(N, -1), l1(N, -1), r1(N, -1), l2(N, -1), r2(N, -1);
    vector<int> heavy(N, -1);

    auto dfs = [&](int now, int pre, auto &&dfs) -> int {
        par[now] = pre;
        each(e, es[now]) {
            if (e == pre) continue;
            depth[e] = depth[now] + 1;
            si[now] += dfs(e, now, dfs);
        }
        return si[now];
    };
    dfs(0, -1, dfs);

    int t = 0;
    id[0] = t++;

    auto dfs_hld = [&](int now, int pre, bool st, auto &&dfs_hld) -> void {
        int ma = -1;
        if (st) root[now] = now;
        each(e, es[now]) {
            if (e == pre) continue;
            if (chmax(ma, si[e])) heavy[now] = e;
        }

        l2[now] = t, r2[now] = t + si[now] - 1;
        if (heavy[now] != -1) {
            int e = heavy[now];
            id[e] = t++;
            root[e] = (st ? e : root[now]);
            dfs_hld(e, now, false, dfs_hld);
        }

        l1[now] = t, r1[now] = t;
        each(e, es[now]) {
            if (e == pre || e == heavy[now]) continue;
            id[e] = t++;
            r1[now] = t;
        }

        each(e, es[now]) {
            if (e == pre || e == heavy[now]) continue;
            dfs_hld(e, now, true, dfs_hld);
        }
    };
    dfs_hld(0, -1, true, dfs_hld);

    auto get_path = [&](int u, int v) {
        vector<pair<int, int>> ret;
        while (root[u] != root[v]) {
            if (depth[root[u]] > depth[root[v]]) swap(u, v);
            ret.emplace_back(id[root[v]], id[v] + 1);
            v = par[root[v]];
        }
        if (depth[u] > depth[v]) swap(u, v);
        ret.emplace_back(id[u], id[v] + 1);
        return ret;
    };

    // print(id), print(l1), print(r1), print(l2), print(r2);
    // print(root);

    vector<mint> x(N);
    rep(i, N) cin >> x[i];

    Dual_Segment_Tree<Affine_Monoid<mint>> seg(N);

    while (Q--) {
        int t, v;
        cin >> t >> v;
        v--;

        if (t == 1) {
            auto [a, b] = seg[id[v]];
            cout << a * x[v] + b << '\n';
        } else if (t == 2) {
            int K;
            mint a, b;
            cin >> K >> a >> b;
            if (par[v] != -1) {
                int u = par[v];
                seg.update(id[u], id[u] + 1, {a, b});
            }
            seg.update(id[v], id[v] + 1, {a, b});
            if (heavy[v] != -1) {
                int u = heavy[v];
                seg.update(id[u], id[u] + 1, {a, b});
            }
            seg.update(l1[v], r1[v], {a, b});
        } else if (t == 3) {
            mint a, b;
            cin >> a >> b;
            seg.update(l2[v], r2[v], {a, b});
            seg.update(id[v], id[v] + 1, {a, b});
        } else {
            int u;
            mint a, b;
            cin >> u >> a >> b;
            u--;
            for (auto [l, r] : get_path(u, v)) seg.update(l, r, {a, b});
        }
    }
}

int main() {
    int T = 1;
    // cin >> T;
    while (T--) solve();
}
0