結果
| 問題 |
No.8030 ミラー・ラビン素数判定法のテスト
|
| ユーザー |
|
| 提出日時 | 2023-06-04 05:12:24 |
| 言語 | C++17 (gcc 13.3.0 + boost 1.87.0) |
| 結果 |
WA
|
| 実行時間 | - |
| コード長 | 8,368 bytes |
| コンパイル時間 | 2,175 ms |
| コンパイル使用メモリ | 200,524 KB |
| 最終ジャッジ日時 | 2025-02-13 22:32:40 |
|
ジャッジサーバーID (参考情報) |
judge2 / judge2 |
(要ログイン)
| ファイルパターン | 結果 |
|---|---|
| other | AC * 4 WA * 6 |
ソースコード
#include <bits/stdc++.h>
using namespace std;
/*
* @title FastIO
* @docs md/util/FastIO.md
*/
class FastIO{
private:
inline static constexpr int ch_0='0';
inline static constexpr int ch_9='9';
inline static constexpr int ch_n='-';
inline static constexpr int ch_s=' ';
inline static constexpr int ch_l='\n';
inline static void endline_skip(char& ch) {
while(ch==ch_l) ch=getchar();
}
template<typename T> inline static void read_integer(T &x) {
int neg=0; char ch; x=0;
ch=getchar();
endline_skip(ch);
if(ch==ch_n) neg=1,ch=getchar();
for(;(ch_0 <= ch && ch <= ch_9); ch = getchar()) x = x*10 + (ch-ch_0);
if(neg) x*=-1;
}
template<typename T> inline static void read_unsigned_integer(T &x) {
char ch; x=0;
ch=getchar();
endline_skip(ch);
for(;(ch_0 <= ch && ch <= ch_9); ch = getchar()) x = x*10 + (ch-ch_0);
}
inline static void read_string(string &x) {
char ch; x="";
ch=getchar();
endline_skip(ch);
for(;(ch != ch_s && ch!=ch_l); ch = getchar()) x.push_back(ch);
}
inline static char ar[40];
inline static char *ch_ar;
template<typename T> inline static void write_integer(T x) {
ch_ar=ar;
if(x< 0) putchar(ch_n), x=-x;
if(x==0) putchar(ch_0);
for(;x;x/=10) *ch_ar++=(ch_0+x%10);
while(ch_ar--!=ar) putchar(*ch_ar);
}
public:
inline static void read(int &x) {read_integer<int>(x);}
inline static void read(long long &x) {read_integer<long long>(x);}
inline static void read(unsigned int &x) {read_unsigned_integer<unsigned int>(x);}
inline static void read(unsigned long long &x) {read_unsigned_integer<unsigned long long>(x);}
inline static void read(string &x) {read_string(x);}
inline static void read(__int128_t &x) {read_integer<__int128_t>(x);}
inline static void write(__int128_t x) {write_integer<__int128_t>(x);}
inline static void write(char x) {putchar(x);}
};
#define read(arg) FastIO::read(arg)
#define write(arg) FastIO::write(arg)
/*
* @title Prime - 高速素因数分解・ミラーラビン素数判定・Gcd・Lcm
* @docs md/math/Prime.md
*/
class Prime{
using int128 = __int128_t;
using u128 = __uint128_t;
using u64 = unsigned long long;
using u32 = unsigned int;
class MontgomeryMod {
u64 mod,inv_mod,pow2_128;
inline u64 reduce(const u128& val) {
return (val + u128(u64(val) * u64(-inv_mod)) * mod) >> 64;
}
inline u128 init_reduce(const u64& val) {
return reduce((u128(val) + mod) * pow2_128);
}
inline u64 mul_impl(const u64 l, const u64 r) {
return reduce(u128(l)*r);
}
public:
MontgomeryMod(const u64 mod):mod(mod),pow2_128(-u128(mod)%mod) {
inv_mod = mod;
for (int i = 0; i < 5; ++i) inv_mod *= 2 - mod * inv_mod;
}
//x^n % mod
inline u64 pow(const u64& x, u64 n) {
u64 mres = init_reduce(1);
for (u64 mx = init_reduce(x); n > 0; n >>= 1, mx=mul_impl(mx,mx)) if (n & 1) mres = mul_impl(mres,mx);
mres=reduce(mres);
return mres >= mod ? mres - mod : mres;
}
inline u64 mul(const u64& l, const u64& r) {
u64 ml=init_reduce(l),mr=init_reduce(r);
u64 mres=reduce(mul_impl(ml,mr));
return mres >= mod ? mres - mod : mres;
}
inline u64 mmul(const u64& l, const u64& r) {
u64 ml=init_reduce(l),mr=init_reduce(r);
return mul_impl(ml,mr);
}
//NOTE lはmontgomery modの状態
inline u64 add(u64 ml, const u64& r) {
u64 mr=init_reduce(r);
if ((ml += mr) >= 2 * mod) ml -= 2 * mod;
u64 mres=reduce(ml);
return mres >= mod ? mres - mod : mres;
}
};
template<size_t sz> inline static constexpr bool miller_rabin(const u64& n, const array<u64,sz>& ar) {
u32 i,s=0;
u64 m = n - 1;
for (;!(m&1);++s,m>>=1);
MontgomeryMod mmod(n);
for (const u64& a: ar) {
if(a>=n) break;
u64 r=mmod.pow(a,m);
if(r != 1) {
for(i=0; i<s; ++i) {
if(r == n-1) break;
r = mmod.mul(r,r);
}
if(i==s) return false;
}
}
return true;
}
inline static long long gcd_impl(long long n, long long m) {
static constexpr long long K = 5;
long long t,s;
for(int i = 0; t = n - m, s = n - m * K, i < 80; ++i) {
if(t<m){
if(!t) return m;
n = m, m = t;
}
else{
if(!m) return t;
n=t;
if(t >= m * K) n = s;
}
}
return gcd_impl(m, n % m);
}
inline static constexpr long long pre(long long n, long long m) {
long long t = n - m;
for(int i = 0; t = n - m, i < 4; ++i) {
(t < m ? n=m,m=t : n=t);
if(!m) return n;
}
return gcd_impl(n, m);
}
inline static constexpr long long pow(long long x, long long n, long long mod) {
long long res = 1;
for (x %= mod; n > 0; n >>= 1, x=(int128(x)*x)%mod) if (n & 1) res = (int128(res)*x)%mod;
return res;
}
inline static constexpr array<u64,3> ar1={2ULL, 7ULL, 61ULL};
inline static constexpr array<u64,7> ar2={2ULL,325ULL,9375ULL,28178ULL,450775ULL,9780504ULL,1795265022ULL};
inline static u64 rho(const u64& n){
if(miller_rabin(n)) return n;
if((n&1) == 0) return 2;
MontgomeryMod mmod(n);
for(u64 c=1,x=2,y=2,d=0;;c++){
do{
x=mmod.add(mmod.mmul(x,x),c);
y=mmod.add(mmod.mmul(y,y),c);
y=mmod.add(mmod.mmul(y,y),c);
d=gcd(x-y+n,n);
}while(d==1);
if(d<n) return d;
}
}
inline static vector<u64> factor(const u64& n, bool is_root) {
if(n <= 1) return {};
u64 p = rho(n);
if(p == n) return {p};
auto l = factor(p, false);
auto r = factor(n / p, false);
copy(r.begin(), r.end(), back_inserter(l));
if(is_root) sort(l.begin(),l.end());
return move(l);
}
inline static constexpr bool miller_rabin(const u64 n) {
if(n <= 1) return false;
if(n == 2) return true;
if(n%2 == 0) return false;
if(n == 3) return true;
if(n%3 == 0) return false;
if(n < 4759123141LL) return miller_rabin(n, ar1);
return miller_rabin(n, ar2);
}
inline static vector<pair<u64,u64>> factorization_impl(const u64 n) {
// queue<u64> q; q.push(n);
// vector<u64> v;
// while(q.size()) {
// u64 tn = q.front(); q.pop();
// if(tn<=1) continue;
// u64 p = rho(tn);
// if(p!=tn) q.push(p),q.push(tn/p);
// else v.push_back(p);
// }
auto v = factor(n, true);
vector<pair<u64,u64>> vp;
u64 prev = 0;
for(u64& p:v) {
if(p == prev) vp.back().second++;
else vp.emplace_back(p,1);
prev=p;
}
return move(vp);
}
public:
inline static constexpr bool is_prime(const u64 n) { return miller_rabin(n); }
//{素因数,個数}のvectorが返却される
inline static vector<pair<u64,u64>> factorization(const u64 n) {return factorization_impl(n);}
//素因数が愚直に昇順で返却される
inline static vector<u64> factor(const u64 n) {return move(factor(n, true));}
inline static constexpr long long gcd(long long n, long long m) { return (n>m ? pre(n,m) : pre(m,n));}
inline static constexpr long long naive_gcd(long long a, long long b) { return (b ? naive_gcd(b, a % b):a);}
inline static constexpr long long lcm(long long a, long long b) {return (a*b ? (a / gcd(a, b)*b): 0);}
inline static constexpr long long ext_gcd(long long a, long long b, long long &x, long long &y) {
if (b == 0) return x = 1, y = 0, a; long long d = ext_gcd(b, a%b, y, x); return y -= a / b * x, d;
}
};
int main() {
cin.tie(0);ios::sync_with_stdio(false);
long long N; read(N);
for(int i = 0; i < N; ++i) {
long long A; read(A);
cout << A << " " << Prime::is_prime(A) << "\n";
}
return 0;
}