結果
| 問題 |
No.435 占い(Extra)
|
| コンテスト | |
| ユーザー |
koyumeishi
|
| 提出日時 | 2016-04-19 06:12:17 |
| 言語 | C++14 (gcc 13.3.0 + boost 1.87.0) |
| 結果 |
WA
|
| 実行時間 | - |
| コード長 | 6,284 bytes |
| コンパイル時間 | 1,602 ms |
| コンパイル使用メモリ | 115,932 KB |
| 実行使用メモリ | 22,656 KB |
| 最終ジャッジ日時 | 2024-10-08 11:17:56 |
| 合計ジャッジ時間 | 7,596 ms |
|
ジャッジサーバーID (参考情報) |
judge2 / judge1 |
(要ログイン)
| ファイルパターン | 結果 |
|---|---|
| sample | WA * 4 |
| other | WA * 13 TLE * 1 -- * 18 |
ソースコード
#include <iostream>
#include <vector>
#include <cstdio>
#include <sstream>
#include <map>
#include <string>
#include <algorithm>
#include <queue>
#include <cmath>
#include <functional>
#include <set>
#include <ctime>
#include <random>
#include <chrono>
#include <cassert>
using namespace std;
namespace {
using Integer = long long; //__int128;
template<class T> istream& operator >> (istream& is, vector<T>& vec){for(T& val: vec) is >> val; return is;}
template<class T> istream& operator , (istream& is, T& val){ return is >> val;}
template<class T> ostream& operator << (ostream& os, const vector<T>& vec){for(int i=0; i<vec.size(); i++) os << vec[i] << (i==vec.size()-1?"":" "); return os;}
template<class T> ostream& operator , (ostream& os, const T& val){ return os << " " << val;}
template<class H> void print(const H& head){ cout << head; }
template<class H, class ... T> void print(const H& head, const T& ... tail){ cout << head << " "; print(tail...); }
template<class ... T> void println(const T& ... values){ print(values...); cout << endl; }
template<class H> void eprint(const H& head){ cerr << head; }
template<class H, class ... T> void eprint(const H& head, const T& ... tail){ cerr << head << " "; print(tail...); }
template<class ... T> void eprintln(const T& ... values){ print(values...); cerr << endl; }
string operator "" _s (const char* str, size_t size){ return move(string(str)); }
constexpr Integer my_pow(Integer x, Integer k, Integer z=1){return k==0 ? z : k==1 ? z*x : (k&1) ? my_pow(x*x,k>>1,z*x) : my_pow(x*x,k>>1,z);}
constexpr Integer my_pow_mod(Integer x, Integer k, Integer M, Integer z=1){return k==0 ? z%M : k==1 ? z*x%M : (k&1) ? my_pow_mod(x*x%M,k>>1,M,z*x%M) : my_pow_mod(x*x%M,k>>1,M,z);}
constexpr unsigned long long operator "" _ten (unsigned long long value){ return my_pow(10,value); }
inline int k_bit(Integer x, int k){return (x>>k)&1;} //0-indexed
mt19937 mt(chrono::duration_cast<chrono::nanoseconds>(chrono::steady_clock::now().time_since_epoch()).count());
template<class T> string join(const vector<T>& v, const string& sep){
stringstream ss; for(int i=0; i<v.size(); i++){ if(i>0) ss << sep; ss << v[i]; } return ss.str();
}
}
constexpr long long mod = 9_ten + 7;
// nCk mod p, O(1)
// precomputation O(size)
class combination_mod{
const long long mod;
const long long size;
vector<long long> fact; //n!
vector<long long> fact_inv; // (n!)^-1
void make_fact(){
fact[0] = 1;
for(long long i=1; i<size; i++){
fact[i] = fact[i-1]*i % mod;
}
}
void make_fact_inv(){
fact_inv[0] = fact_inv[1] = 1;
for(long long i=2; i<size; i++){
fact_inv[i] = fact_inv[mod%i] * (mod - mod/i) % mod; // x ^ -1
}
for(int i=2; i<size; i++){
fact_inv[i] = fact_inv[i-1] * fact_inv[i] % mod; // x! ^ -1
}
}
public:
combination_mod(long long mod_, long long size_ = 2000000) : mod(mod_), size(size_+1){
fact.resize(size);
fact_inv.resize(size);
make_fact();
make_fact_inv();
}
//nCk mod p O(1)
long long comb(long long n, long long k){
if(k==0 || n==k) return 1;
long long ret = fact[n] * fact_inv[k] % mod * fact_inv[n-k] % mod;
return ret;
}
};
long long gcd(long long a, long long b){ return (b==0)?a:gcd(b,a%b); }
template<class ... T> long long gcd(long long a, long long b, T ... c){ return gcd(gcd(a,b), c...);}
long long lcm(long long a, long long b){ if(a<b) swap(a,b); return (b==1)?a:a*(b/gcd(a,b)); }
template<class ... T> long long lcm(long long a, long long b, T ... c){ return lcm(lcm(a,b), c...);}
long long extgcd(long long a, long long b, long long &x, long long &y){
long long d=a;
if(b!=0){
d = extgcd(b, a%b, y, x);
y -= (a/b) * x;
}else{
x = 1;
y = 0;
}
return d;
}
long long mod_inverse(long long a, long long m){
long long x,y;
extgcd(a,m,x,y);
return (m+x%m)%m;
}
// Z % Yi = Xi であるようなZを求める。Garnerのアルゴリズム O(N^2)
// 参考 http://techtipshoge.blogspot.jp/2015/02/blog-post_15.html
// http://yukicoder.me/problems/448
long long Chinese_Remainder_Theorem_Garner(vector<long long> x, vector<long long> y, long long MOD){
int N = x.size();
bool valid = true;
//前処理
//gcd(Yi,Yj) == 1 (i!=j) でなくてはならないので、
//共通の因数 g = gcd(Yi,Yj) を見つけたら片側に寄せてしまう
for(int i=0; i<N; i++){
for(int j=i+1; j<N; j++){
if(i == j) continue;
long long g = gcd(y[i], y[j]);
if( x[i]%g != x[j]%g ) valid = false; //解が存在しない
if(g != 1){
y[i] /= g; y[j] /= g;
long long g_ = gcd(y[i], g);
while(g_ != 1){
y[i] *= g_;
g /= g_;
g_ = gcd(y[i], g);
}
y[j] *= g;
x[i] %= y[i];
x[j] %= y[j];
}
}
}
if(!valid){
cerr << -1 << endl;
return 0;
}
//Garner's algorithm
vector<long long> z(N);
for(int i=0; i<N; i++){
z[i] = x[i];
for(int j=0; j<i; j++){
z[i] = mod_inverse(y[j], y[i]) % y[i] * (z[i] - z[j]) % y[i];
z[i] = (z[i]+y[i])%y[i];
}
}
long long ans = 0;
long long tmp = 1;
for(int i=0; i<N; i++){
ans = (ans + z[i] * tmp)%MOD;
tmp = (tmp * y[i])%MOD;
}
return ans;
}
int main(){
int t;
cin >> t;
vector<combination_mod> c;
c.emplace_back(9_ten+7, 5_ten+10);
c.emplace_back(9_ten+9, 5_ten+10);
c.emplace_back(9_ten+21, 5_ten+10);
c.emplace_back(9_ten+33, 5_ten+10);
c.emplace_back(9_ten+87, 5_ten+10);
c.emplace_back(999999893, 5_ten+10);
c.emplace_back(999999797, 5_ten+10);
c.emplace_back(999999599, 5_ten+10);
c.emplace_back(999999503, 5_ten+10);
vector<long long> y ={
9_ten+7,
9_ten+9,
9_ten+21,
9_ten+33,
9_ten+87,
999999893,
999999797,
999999599,
999999503,
};
while(t--){
string s;
cin >> s;
bool zero = true;
for(int i=0; i<s.size(); i++){
if(s[i] != '0'){
zero = false;
break;
}
}
if(zero){
println(0);
continue;
}
vector<int> v(s.size());
for(int i=0; i<s.size(); i++){
v[i] = s[i] - '0';
if(v[i] == 0) v[i] = 9;
}
long long ans = 0;
int n = s.size();
for(int i=0; i<n; i++){
vector<long long> x;
for(int j=0; j<c.size(); j++){
x.push_back(c[j].comb(n-1,i));
}
long long k = Chinese_Remainder_Theorem_Garner(x,y,9);
ans += (k * v[i]);
ans %= 9;
}
if(ans == 0) ans = 9;
println(ans);
}
return 0;
}
koyumeishi