結果

問題 No.2272 多項式乗算 mod 258280327
ユーザー tsugutsugu
提出日時 2023-06-04 23:36:33
言語 C++23
(gcc 13.3.0 + boost 1.87.0)
結果
AC  
実行時間 780 ms / 2,000 ms
コード長 11,570 bytes
コンパイル時間 4,827 ms
コンパイル使用メモリ 289,184 KB
実行使用メモリ 28,536 KB
最終ジャッジ日時 2024-12-29 04:03:32
合計ジャッジ時間 10,239 ms
ジャッジサーバーID
(参考情報)
judge2 / judge1
このコードへのチャレンジ
(要ログイン)
ファイルパターン 結果
other AC * 33
権限があれば一括ダウンロードができます

ソースコード

diff #
プレゼンテーションモードにする

#include <bits/stdc++.h>
using namespace std;
#ifdef LOCAL
#include "debug.hpp"
#else
#define debug(...) 1
#endif
using u64 = unsigned long long;
struct xorshift {
using u32 = uint32_t;
u32 x = 123456789, y = 362436069, z = 521288629, w = 88675123;
xorshift(u32 seed = 0) { z ^= seed; }
u32 operator()() {
u32 t = x ^ (x << 11);
x = y;
y = z;
z = w;
return w = (w ^ (w >> 19)) ^ (t ^ (t >> 8));
}
};
unsigned long long modpow128(unsigned long long a, unsigned long long n, unsigned long long mod) {
unsigned long long res = 1;
while (n > 0) {
if (n & 1) {
res = (__uint128_t) res * a % mod;
}
a = (__uint128_t) a * a % mod;
n >>= 1;
}
return res;
}
const vector<int> primes_small = {2, 7, 61};
const vector<int> primes_large = {2, 325, 9375, 28178, 450775, 9780504, 1795265022};
bool MillerRabin(long long n) {
if (n == 1) {
return false;
} else if (n == 2) {
return true;
} else if (n % 2 == 0) {
return false;
}
long long d = n - 1, s = 0;
while (d % 2 == 0) {
s++;
d >>= 1;
}
vector<int> primes = (n < 4759123141LL ? primes_small : primes_large);
for (int p : primes) {
if (p >= n) {
break;
}
bool composite = true;
__int128_t x = modpow128(p, d, n);
composite &= (x != 1);
for (int i = 0; i < s; i++) {
composite &= (x != n - 1);
x = (x * x) % n;
}
if (composite) {
return false;
}
}
return true;
}
long long gcd(long long a, long long b) {
return b ? gcd(b, a % b) : a;
}
long long find_prime_factor(long long N) {
if (~N & 1) {
return 2;
}
if (MillerRabin(N)) {
return N;
}
random_device seed_gen;
xorshift rnd(seed_gen());
long long beg = 0;
auto f = [&] (long long A, long long d) -> long long { return ((__int128_t) A * A + d) % N; };
while (1) {
long long d = rnd();
long long x = ++beg, y = f(x, d);
while (1) {
long long p = gcd(N, abs(x - y));
if (p == 0 || p == N) {
break;
}
if (p != 1) {
return p;
}
x = f(x, d);
y = f(f(y, d), d);
}
}
}
vector<long long> prime_factorize(long long N) {
if (N == 1) return {};
long long p = find_prime_factor(N);
if (p == N) {
return {p};
}
vector<long long> left = prime_factorize(p);
vector<long long> right = prime_factorize(N / p);
left.insert(left.end(), right.begin(), right.end());
sort(left.begin(), left.end());
return left;
}
long long primitive_root(long long p) {
if (p == 2) return 1;
if (p == 167772161) return 3;
if (p == 469762049) return 3;
if (p == 754974721) return 11;
if (p == 998244353) return 3;
vector<long long> v = prime_factorize(p - 1);
v.erase(unique(v.begin(), v.end()), v.end());
random_device seed_gen;
mt19937_64 mt(seed_gen());
while (1) {
unsigned long long x = mt() % p;
if (x == 0) {
continue;
}
if (modpow128(x, p - 1, p) == 1) {
bool ok = true;
for (int i = 0; i < (int) v.size(); i++) {
if (modpow128(x, (p - 1) / v[i], p) == 1) {
ok = false;
break;
}
}
if (ok) {
assert(modpow128(x, p - 1, p) == 1);
return x;
}
}
}
}
long long extgcd(long long a, long long b, long long &x, long long &y) {
if (b == 0) {
x = 1, y = 0;
return a;
}
long long d = extgcd(b, a % b, y, x);
y -= a / b * x;
return d;
}
long long mod_inv(long long a, long long m) {
long long x, y;
extgcd(a, m, x, y);
return (m + x % m) % m;
}
long long Garner(vector<long long> R, vector<long long> M, long long mod) {
assert(R.size() == M.size());
M.push_back(mod);
vector<long long> coeffs((int) M.size(), 1), constants((int) M.size(), 0);
for (int i = 0; i < (int) R.size(); i++) {
long long v = (R[i] - constants[i]) * mod_inv(coeffs[i], M[i]) % M[i];
if (v < 0) {
v += M[i];
}
for (int j = i + 1; j < (int) M.size(); j++) {
(constants[j] += coeffs[j] * v) %= M[j];
(coeffs[j] *= M[i]) %= M[j];
}
}
return constants.back();
}
template <int m>
struct modint {
unsigned int v = 0;
static constexpr long long mod() { return m; }
static constexpr unsigned int umod() { return m; }
unsigned int val() { return v; }
modint() : v(0) {}
modint(long long _v) {
long long x = (long long)(_v % umod());
if (x < 0) {
x += umod();
}
v = (unsigned int) x;
}
modint operator+() const { return *this; }
modint operator-() const { return modint() - *this; }
modint(const modint &rhs) { v = rhs.v; }
modint &operator+=(const modint &rhs) {
v += rhs.v;
if (v >= umod()) {
v -= umod();
}
return *this;
}
modint operator+(const modint &rhs) const {
return modint(*this) += rhs;
}
modint &operator-=(const modint &rhs) {
v -= rhs.v;
if (v >= umod()) {
v += umod();
}
return *this;
}
modint operator-(const modint &rhs) const {
return modint(*this) -= rhs;
}
modint &operator*=(const modint &rhs) {
unsigned long long x = v;
x *= rhs.v;
v = (unsigned int) (x % umod());
return *this;
}
modint operator*(const modint &rhs) const {
return modint(*this) *= rhs;
}
template <typename T>
modint pow(T n) const {
modint x = *this, ret = 1;
while (n) {
if (n & 1) ret *= x;
x *= x;
n >>= 1;
}
return ret;
}
modint inv() const {
return pow(umod() - 2);
}
modint &operator/=(const modint &rhs) {
*this *= rhs.inv();
return *this;
}
modint operator/(const modint &rhs) const {
return modint(*this) /= rhs;
}
friend istream &operator>>(istream &is, modint &v) {
long long x;
is >> x;
v.v = x;
return is;
}
friend ostream &operator<<(ostream &os, modint &v) {
return os << v.v;
}
};
constexpr int md = 998244353;
// constexpr int md = 1000000007;
vector<modint<md>> fact, inv, inv_fact;
void cominit(int MAX) {
fact.resize(MAX + 1);
inv.resize(MAX + 1);
inv_fact.resize(MAX + 1);
fact[0] = fact[1] = 1;
inv_fact[0] = inv_fact[1] = 1;
inv[1] = 1;
for (int i = 2; i <= MAX; i++) {
fact[i] = fact[i - 1] * i;
inv[i] = -inv[md % i] * (modint<md>) (md / i);
inv_fact[i] = inv_fact[i - 1] * inv[i];
}
}
template <typename T>
modint<md> Com(T n, T k) {
assert(n < (int) fact.size() && k < (int) fact.size());
if (n < k) return 0;
if (n < 0 || k < 0) return 0;
return fact[n] * inv_fact[k] * inv_fact[n - k];
}
template <typename T>
modint<md> Per(T n, T k) {
assert(n < (int) fact.size() && k < (int) fact.size());
if (n < k) return 0;
if (n < 0 || k < 0) return 0;
return fact[n] * inv_fact[n - k];
}
using Mint = modint<md>;
template <int MOD>
vector<modint<MOD>> ntt(vector<modint<MOD>> A, modint<MOD> p_root) {
int N = A.size();
vector<int> bit(N);
bit[0] = 0;
int b = __builtin_ctz(N); // N = 1 << b
for (int i = 0; i < b; i++) {
int x = 1 << i, y = 1 << (b - 1 - i);
for (int j = 0; j < (1 << i); j++) {
bit[x + j] = bit[j] + y;
}
}
vector<modint<MOD>> B(N);
for (int i = 0; i < N; i++) {
B[i] = A[bit[i]];
}
for (int i = 1; i <= b; i++) {
modint<MOD> g = p_root.pow((modint<MOD>::mod() - 1) >> i);
for (int j = 0; j < N; j += (1 << i)) {
modint<MOD> om = 1;
for (int k = 0; k < (1 << (i - 1)); k++) {
modint<MOD> x = B[j + k], y = B[j + k + (1 << (i - 1))] * om;
B[j + k] = x + y;
B[j + k + (1 << (i - 1))] = x - y;
om *= g;
}
}
}
return B;
}
/* vector<Mint> convolution998244353(vector<Mint> A, vector<Mint> B) {
int N = (int) A.size(), M = (int) B.size();
int deg = 1;
while (deg < N + M) {
deg <<= 1;
}
Mint p_root = 3;
A.resize(deg), B.resize(deg);
A = ntt(A, p_root);
B = ntt(B, p_root);
for (int i = 0; i < deg; i++) {
A[i] *= B[i];
}
A = ntt(A, p_root.inv());
A.resize(N + M - 1);
Mint deg_inv = Mint(deg).inv();
for (int i = 0; i < N + M - 1; i++) {
A[i] *= deg_inv;
}
return A;
} */
using u64 = unsigned long long;
template <int MOD>
vector<modint<MOD>> convolution(vector<modint<MOD>> A, vector<modint<MOD>> B) {
int N = (int) A.size(), M = (int) B.size();
int deg = 1;
while (deg < N + M) {
deg <<= 1;
}
A.resize(deg), B.resize(deg);
long long p_root = primitive_root(MOD);
A = ntt(A, modint<MOD>(p_root));
B = ntt(B, modint<MOD>(p_root));
for (int i = 0; i < deg; i++) {
A[i] *= B[i];
}
A = ntt(A, modint<MOD>(p_root).inv());
A.resize(N + M - 1);
modint<MOD> deg_inv = modint<MOD>(deg).inv();
for (int i = 0; i < N + M - 1; i++) {
A[i] *= deg_inv;
}
return A;
}
vector<long long> convolution_arbitrary_mod(vector<long long> &A, vector<long long> &B, u64 MOD) {
static constexpr u64 MOD1 = 754974721; // 2^24
static constexpr u64 MOD2 = 167772161; // 2^25
static constexpr u64 MOD3 = 469762049; // 2^26
int N = A.size(), M = B.size();
vector<modint<MOD1>> MA1(N), MB1(M);
vector<modint<MOD2>> MA2(N), MB2(M);
vector<modint<MOD3>> MA3(N), MB3(M);
for (int i = 0; i < N; i++) {
MA1[i] = A[i];
MA2[i] = A[i];
MA3[i] = A[i];
}
for (int i = 0; i < M; i++) {
MB1[i] = B[i];
MB2[i] = B[i];
MB3[i] = B[i];
}
vector<modint<MOD1>> MC1 = convolution(MA1, MB1);
vector<modint<MOD2>> MC2 = convolution(MA2, MB2);
vector<modint<MOD3>> MC3 = convolution(MA3, MB3);
vector<long long> C(N + M - 1);
for (int i = 0; i < N + M - 1; i++) {
vector<long long> R = {MC1[i].val(), MC2[i].val(), MC3[i].val()};
vector<long long> M = {MOD1, MOD2, MOD3};
C[i] = Garner(R, M, MOD);
}
return C;
}
const int mod = 258280327;
int main() {
ios::sync_with_stdio(false);
cin.tie(nullptr);
int N;
cin >> N;
vector<long long> A(N + 1);
for (int i = 0; i < N + 1; i++) {
cin >> A[i];
}
int M;
cin >> M;
vector<long long> B(M + 1);
for (int i = 0; i < M + 1; i++) {
cin >> B[i];
}
if (N == 0 && A[0] == 0) {
cout << 0 << '\n';
cout << 0 << '\n';
return 0;
}
if (M == 0 && B[0] == 0) {
cout << 0 << '\n';
cout << 0 << '\n';
return 0;
}
for (int i = 0; i < N + 1; i++) {
A[i] %= mod;
}
for (int i = 0; i < M + 1; i++) {
B[i] %= mod;
}
vector<long long> C = convolution_arbitrary_mod(A, B, 258280327);
cout << N + M << '\n';
for (int i = 0; i < N + M + 1; i++) {
cout << C[i] << " \n"[i == N + M];
}
}
הההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההה
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
0