結果

問題 No.2328 Build Walls
ユーザー 👑 p-adicp-adic
提出日時 2023-06-08 01:03:29
言語 C++17(gcc12)
(gcc 12.3.0 + boost 1.87.0)
結果
AC  
実行時間 334 ms / 3,000 ms
コード長 20,964 bytes
コンパイル時間 4,203 ms
コンパイル使用メモリ 234,276 KB
実行使用メモリ 8,576 KB
最終ジャッジ日時 2024-12-30 06:44:51
合計ジャッジ時間 9,896 ms
ジャッジサーバーID
(参考情報)
judge2 / judge5
このコードへのチャレンジ
(要ログイン)

テストケース

テストケース表示
入力 結果 実行時間
実行使用メモリ
testcase_00 AC 2 ms
6,816 KB
testcase_01 AC 2 ms
6,816 KB
testcase_02 AC 2 ms
6,820 KB
testcase_03 AC 2 ms
6,820 KB
testcase_04 AC 2 ms
6,820 KB
testcase_05 AC 2 ms
6,820 KB
testcase_06 AC 2 ms
6,820 KB
testcase_07 AC 2 ms
6,816 KB
testcase_08 AC 3 ms
6,816 KB
testcase_09 AC 2 ms
6,816 KB
testcase_10 AC 2 ms
6,820 KB
testcase_11 AC 2 ms
6,816 KB
testcase_12 AC 2 ms
6,816 KB
testcase_13 AC 32 ms
6,820 KB
testcase_14 AC 95 ms
6,820 KB
testcase_15 AC 71 ms
6,816 KB
testcase_16 AC 13 ms
6,820 KB
testcase_17 AC 62 ms
6,820 KB
testcase_18 AC 3 ms
6,820 KB
testcase_19 AC 7 ms
6,816 KB
testcase_20 AC 9 ms
6,816 KB
testcase_21 AC 28 ms
6,820 KB
testcase_22 AC 155 ms
6,912 KB
testcase_23 AC 275 ms
8,492 KB
testcase_24 AC 242 ms
8,528 KB
testcase_25 AC 270 ms
8,508 KB
testcase_26 AC 189 ms
8,512 KB
testcase_27 AC 232 ms
8,368 KB
testcase_28 AC 51 ms
8,448 KB
testcase_29 AC 280 ms
8,448 KB
testcase_30 AC 56 ms
8,576 KB
testcase_31 AC 54 ms
8,576 KB
testcase_32 AC 230 ms
8,576 KB
testcase_33 AC 334 ms
8,576 KB
testcase_34 AC 62 ms
8,576 KB
testcase_35 AC 270 ms
8,528 KB
testcase_36 AC 2 ms
6,816 KB
権限があれば一括ダウンロードができます

ソースコード

diff #

#ifdef DEBUG
  #define _GLIBCXX_DEBUG
  #define CERR( ANSWER ) cerr << ANSWER << endl;
  #define LIBRARY_SEARCH if( LibrarySearch() != 0 ){ QUIT; };
#else
  #pragma GCC optimize ( "O3" )
  #pragma GCC optimize( "unroll-loops" )
  #pragma GCC target ( "sse4.2,fma,avx2,popcnt,lzcnt,bmi2" )
  #define CERR( ANSWER ) 
  #define LIBRARY_SEARCH
#endif
#include <bits/stdc++.h>
using namespace std;

using uint = unsigned int;
using ll = long long;
using ull = unsigned long long;

#define ATT __attribute__( ( target( "sse4.2,fma,avx2,popcnt,lzcnt,bmi2" ) ) )
#define TYPE_OF( VAR ) decay_t<decltype( VAR )>
#define UNTIE ios_base::sync_with_stdio( false ); cin.tie( nullptr )
#define CEXPR( LL , BOUND , VALUE ) constexpr LL BOUND = VALUE
#define CIN( LL , A ) LL A; cin >> A
#define ASSERT( A , MIN , MAX ) assert( ( MIN ) <= A && A <= ( MAX ) )
#define CIN_ASSERT( A , MIN , MAX ) CIN( TYPE_OF( MAX ) , A ); ASSERT( A , MIN , MAX )
#define SET_ASSERT( A , MIN , MAX ) cin >> A; ASSERT( A , MIN , MAX )
#define GETLINE( A ) string A; getline( cin , A )
#define GETLINE_SEPARATE( A , SEPARATOR ) string A; getline( cin , A , SEPARATOR )
#define FOR( VAR , INITIAL , FINAL_PLUS_ONE ) for( TYPE_OF( FINAL_PLUS_ONE ) VAR = INITIAL ; VAR < FINAL_PLUS_ONE ; VAR ++ )
#define FOREQ( VAR , INITIAL , FINAL ) for( TYPE_OF( FINAL ) VAR = INITIAL ; VAR <= FINAL ; VAR ++ )
#define FOREQINV( VAR , INITIAL , FINAL ) for( TYPE_OF( INITIAL ) VAR = INITIAL ; VAR >= FINAL ; VAR -- )
#define FOR_ITR( ARRAY , ITR , END ) for( auto ITR = ARRAY .begin() , END = ARRAY .end() ; ITR != END ; ITR ++ )
#define REPEAT( HOW_MANY_TIMES ) FOR( VARIABLE_FOR_REPEAT , 0 , HOW_MANY_TIMES )
#define QUIT return 0
#define COUT( ANSWER ) cout << ( ANSWER ) << "\n"
#define RETURN( ANSWER ) COUT( ANSWER ); QUIT
#define SET_PRECISION( PRECISION ) cout << fixed << setprecision( PRECISION )
#define DOUBLE( PRECISION , ANSWER ) SET_PRECISION << ( ANSWER ) << "\n"; QUIT

template <typename T> inline T Absolute( const T& a ){ return a > 0 ? a : -a; }
template <typename T> inline T Residue( const T& a , const T& p ){ return a >= 0 ? a % p : ( a % p ) + p; }

#define POWER( ANSWER , ARGUMENT , EXPONENT )				\
  static_assert( ! is_same<TYPE_OF( ARGUMENT ),int>::value && ! is_same<TYPE_OF( ARGUMENT ),uint>::value ); \
  TYPE_OF( ARGUMENT ) ANSWER{ 1 };					\
  {									\
    TYPE_OF( ARGUMENT ) ARGUMENT_FOR_SQUARE_FOR_POWER = ( ARGUMENT );	\
    TYPE_OF( EXPONENT ) EXPONENT_FOR_SQUARE_FOR_POWER = ( EXPONENT );	\
    while( EXPONENT_FOR_SQUARE_FOR_POWER != 0 ){			\
      if( EXPONENT_FOR_SQUARE_FOR_POWER % 2 == 1 ){			\
	ANSWER *= ARGUMENT_FOR_SQUARE_FOR_POWER;			\
      }									\
      ARGUMENT_FOR_SQUARE_FOR_POWER *= ARGUMENT_FOR_SQUARE_FOR_POWER;	\
      EXPONENT_FOR_SQUARE_FOR_POWER /= 2;				\
    }									\
  }									\

#define POWER_MOD( ANSWER , ARGUMENT , EXPONENT , MODULO )		\
  ll ANSWER{ 1 };							\
  {									\
    ll ARGUMENT_FOR_SQUARE_FOR_POWER = ( MODULO + ( ( ARGUMENT ) % MODULO ) ) % MODULO; \
    TYPE_OF( EXPONENT ) EXPONENT_FOR_SQUARE_FOR_POWER = ( EXPONENT );	\
    while( EXPONENT_FOR_SQUARE_FOR_POWER != 0 ){			\
      if( EXPONENT_FOR_SQUARE_FOR_POWER % 2 == 1 ){			\
	ANSWER = ( ANSWER * ARGUMENT_FOR_SQUARE_FOR_POWER ) % MODULO;	\
      }									\
      ARGUMENT_FOR_SQUARE_FOR_POWER = ( ARGUMENT_FOR_SQUARE_FOR_POWER * ARGUMENT_FOR_SQUARE_FOR_POWER ) % MODULO; \
      EXPONENT_FOR_SQUARE_FOR_POWER /= 2;				\
    }									\
  }									\

#define FACTORIAL_MOD( ANSWER , ANSWER_INV , INVERSE , MAX_INDEX , CONSTEXPR_LENGTH , MODULO ) \
  static ll ANSWER[CONSTEXPR_LENGTH];						\
  static ll ANSWER_INV[CONSTEXPR_LENGTH];						\
  static ll INVERSE[CONSTEXPR_LENGTH];						\
  {									\
    ll VARIABLE_FOR_PRODUCT_FOR_FACTORIAL = 1;				\
    ANSWER[0] = VARIABLE_FOR_PRODUCT_FOR_FACTORIAL;			\
    FOREQ( i , 1 , MAX_INDEX ){						\
      ANSWER[i] = ( VARIABLE_FOR_PRODUCT_FOR_FACTORIAL *= i ) %= MODULO; \
    }									\
    ANSWER_INV[0] = ANSWER_INV[1] = INVERSE[1] = VARIABLE_FOR_PRODUCT_FOR_FACTORIAL = 1; \
    FOREQ( i , 2 , MAX_INDEX ){						\
      ANSWER_INV[i] = ( VARIABLE_FOR_PRODUCT_FOR_FACTORIAL *= INVERSE[i] = MODULO - ( ( ( MODULO / i ) * INVERSE[MODULO % i] ) % MODULO ) ) %= MODULO; \
    }									\
  }									\

// 通常の二分探索その1
// EXPRESSIONがANSWERの狭義単調増加関数の時、EXPRESSION >= TARGETを満たす最小の整数を返す。
// 広義単調増加関数を扱いたい時は等号成立の処理を消して続く>に等号を付ける。
#define BS1( ANSWER , MINIMUM , MAXIMUM , EXPRESSION , TARGET )		\
  static_assert( ! is_same<TYPE_OF( TARGET ),uint>::value && ! is_same<TYPE_OF( TARGET ),ull>::value ); \
  ll ANSWER;								\
  {									\
    ll VARIABLE_FOR_BINARY_SEARCH_L = MINIMUM;				\
    ll VARIABLE_FOR_BINARY_SEARCH_U = MAXIMUM;				\
    ANSWER = ( VARIABLE_FOR_BINARY_SEARCH_L + VARIABLE_FOR_BINARY_SEARCH_U ) / 2; \
    ll VARIABLE_FOR_DIFFERENCE_FOR_BINARY_SEARCH; \
    while( VARIABLE_FOR_BINARY_SEARCH_L != VARIABLE_FOR_BINARY_SEARCH_U ){ \
      VARIABLE_FOR_DIFFERENCE_FOR_BINARY_SEARCH = ( EXPRESSION ) - ( TARGET ); \
      CERR( VARIABLE_FOR_BINARY_SEARCH_L << "<=" << ANSWER << "<=" << VARIABLE_FOR_BINARY_SEARCH_U << ":" << EXPRESSION << "-" << TARGET << "=" << VARIABLE_FOR_DIFFERENCE_FOR_BINARY_SEARCH ); \
      if( VARIABLE_FOR_DIFFERENCE_FOR_BINARY_SEARCH == 0 ){		\
	break;								\
      } else {								\
	if( VARIABLE_FOR_DIFFERENCE_FOR_BINARY_SEARCH > 0 ){		\
	  VARIABLE_FOR_BINARY_SEARCH_U = ANSWER;			\
	} else {							\
	  VARIABLE_FOR_BINARY_SEARCH_L = ANSWER + 1;			\
	}								\
	ANSWER = ( VARIABLE_FOR_BINARY_SEARCH_L + VARIABLE_FOR_BINARY_SEARCH_U ) / 2; \
      }									\
    }									\
    CERR( VARIABLE_FOR_BINARY_SEARCH_L << "<=" << ANSWER << "<=" << VARIABLE_FOR_BINARY_SEARCH_U << ":" << EXPRESSION << "-" << TARGET << ">=0" ); \
  }									\

// 通常の二分探索その2
// EXPRESSIONがANSWERの狭義単調増加関数の時、EXPRESSION <= TARGETを満たす最大の整数を返す。
// 広義単調増加関数を扱いたい時は等号成立の処理を消して続く<に等号を付ける。
#define BS2( ANSWER , MINIMUM , MAXIMUM , EXPRESSION , TARGET )		\
  static_assert( ! is_same<TYPE_OF( TARGET ),uint>::value && ! is_same<TYPE_OF( TARGET ),ull>::value ); \
  ll ANSWER;								\
  {									\
    ll VARIABLE_FOR_BINARY_SEARCH_L = MINIMUM;				\
    ll VARIABLE_FOR_BINARY_SEARCH_U = MAXIMUM;				\
    ANSWER = ( VARIABLE_FOR_BINARY_SEARCH_L + VARIABLE_FOR_BINARY_SEARCH_U ) / 2; \
    ll VARIABLE_FOR_DIFFERENCE_FOR_BINARY_SEARCH; \
    while( VARIABLE_FOR_BINARY_SEARCH_L != VARIABLE_FOR_BINARY_SEARCH_U ){ \
      VARIABLE_FOR_DIFFERENCE_FOR_BINARY_SEARCH = ( EXPRESSION ) - ( TARGET ); \
      CERR( VARIABLE_FOR_BINARY_SEARCH_L << "<=" << ANSWER << "<=" << VARIABLE_FOR_BINARY_SEARCH_U << ":" << EXPRESSION << "-" << TARGET << "=" << VARIABLE_FOR_DIFFERENCE_FOR_BINARY_SEARCH ); \
      if( VARIABLE_FOR_DIFFERENCE_FOR_BINARY_SEARCH == 0 ){		\
	break;								\
      } else {								\
	if( VARIABLE_FOR_DIFFERENCE_FOR_BINARY_SEARCH < 0 ){		\
	  VARIABLE_FOR_BINARY_SEARCH_L = ANSWER;			\
	} else {							\
	  VARIABLE_FOR_BINARY_SEARCH_U = ANSWER - 1;			\
	}								\
	ANSWER = ( VARIABLE_FOR_BINARY_SEARCH_L + 1 + VARIABLE_FOR_BINARY_SEARCH_U ) / 2; \
      }									\
    }									\
    CERR( VARIABLE_FOR_BINARY_SEARCH_L << "<=" << ANSWER << "<=" << VARIABLE_FOR_BINARY_SEARCH_U << ":" << EXPRESSION << "-" << TARGET << "<=0" ); \
  }									\

// 通常の二分探索その3
// EXPRESSIONがANSWERの狭義単調減少関数の時、EXPRESSION >= TARGETを満たす最大の整数を返す。
// 広義単調増加関数を扱いたい時は等号成立の処理を消して続く>に等号を付ける。
#define BS3( ANSWER , MINIMUM , MAXIMUM , EXPRESSION , TARGET )		\
  static_assert( ! is_same<TYPE_OF( TARGET ),uint>::value && ! is_same<TYPE_OF( TARGET ),ull>::value ); \
  ll ANSWER;								\
  {									\
    ll VARIABLE_FOR_BINARY_SEARCH_L = MINIMUM;				\
    ll VARIABLE_FOR_BINARY_SEARCH_U = MAXIMUM;				\
    ANSWER = ( VARIABLE_FOR_BINARY_SEARCH_L + VARIABLE_FOR_BINARY_SEARCH_U ) / 2; \
    ll VARIABLE_FOR_DIFFERENCE_FOR_BINARY_SEARCH; \
    while( VARIABLE_FOR_BINARY_SEARCH_L != VARIABLE_FOR_BINARY_SEARCH_U ){ \
      VARIABLE_FOR_DIFFERENCE_FOR_BINARY_SEARCH = ( EXPRESSION ) - ( TARGET ); \
      CERR( VARIABLE_FOR_BINARY_SEARCH_L << "<=" << ANSWER << "<=" << VARIABLE_FOR_BINARY_SEARCH_U << ":" << EXPRESSION << "-" << TARGET << "=" << VARIABLE_FOR_DIFFERENCE_FOR_BINARY_SEARCH ); \
      if( VARIABLE_FOR_DIFFERENCE_FOR_BINARY_SEARCH == 0 ){		\
	break;								\
      } else {								\
	if( VARIABLE_FOR_DIFFERENCE_FOR_BINARY_SEARCH > 0 ){		\
	  VARIABLE_FOR_BINARY_SEARCH_L = ANSWER;			\
	} else {							\
	  VARIABLE_FOR_BINARY_SEARCH_U = ANSWER - 1;			\
	}								\
	ANSWER = ( VARIABLE_FOR_BINARY_SEARCH_L + 1 + VARIABLE_FOR_BINARY_SEARCH_U ) / 2; \
      }									\
    }									\
    CERR( VARIABLE_FOR_BINARY_SEARCH_L << "<=" << ANSWER << "<=" << VARIABLE_FOR_BINARY_SEARCH_U << ":" << EXPRESSION << "-" << TARGET << ">=0" ); \
  }									\

// 通常の二分探索その4
// EXPRESSIONがANSWERの狭義単調減少関数の時、EXPRESSION <= TARGETを満たす最小の整数を返す。
// 広義単調増加関数を扱いたい時は等号成立の処理を消して続く<に等号を付ける。
#define BS4( ANSWER , MINIMUM , MAXIMUM , EXPRESSION , TARGET )		\
  static_assert( ! is_same<TYPE_OF( TARGET ),uint>::value && ! is_same<TYPE_OF( TARGET ),ull>::value ); \
  ll ANSWER;								\
  {									\
    ll VARIABLE_FOR_BINARY_SEARCH_L = MINIMUM;				\
    ll VARIABLE_FOR_BINARY_SEARCH_U = MAXIMUM;				\
    ANSWER = ( VARIABLE_FOR_BINARY_SEARCH_L + VARIABLE_FOR_BINARY_SEARCH_U ) / 2; \
    ll VARIABLE_FOR_DIFFERENCE_FOR_BINARY_SEARCH; \
    while( VARIABLE_FOR_BINARY_SEARCH_L != VARIABLE_FOR_BINARY_SEARCH_U ){ \
      VARIABLE_FOR_DIFFERENCE_FOR_BINARY_SEARCH = ( EXPRESSION ) - ( TARGET ); \
      CERR( VARIABLE_FOR_BINARY_SEARCH_L << "<=" << ANSWER << "<=" << VARIABLE_FOR_BINARY_SEARCH_U << ":" << EXPRESSION << "-" << TARGET << "=" << VARIABLE_FOR_DIFFERENCE_FOR_BINARY_SEARCH ); \
      if( VARIABLE_FOR_DIFFERENCE_FOR_BINARY_SEARCH == 0 ){		\
	break;								\
      } else {								\
	if( VARIABLE_FOR_DIFFERENCE_FOR_BINARY_SEARCH < 0 ){		\
	  VARIABLE_FOR_BINARY_SEARCH_U = ANSWER;			\
	} else {							\
	  VARIABLE_FOR_BINARY_SEARCH_L = ANSWER + 1;			\
	}								\
	ANSWER = ( VARIABLE_FOR_BINARY_SEARCH_L + VARIABLE_FOR_BINARY_SEARCH_U ) / 2; \
      }									\
    }									\
    CERR( VARIABLE_FOR_BINARY_SEARCH_L << "<=" << ANSWER << "<=" << VARIABLE_FOR_BINARY_SEARCH_U << ":" << EXPRESSION << "-" << TARGET << "<=0" ); \
  }									\



// 二進法の二分探索
// EXPRESSIONがANSWERの狭義単調増加関数の時、EXPRESSION <= TARGETを満たす最大の整数を返す。
#define BBS( ANSWER , MINIMUM , MAXIMUM , EXPRESSION , TARGET )		\
  ll ANSWER = MINIMUM;							\
  {									\
    ll VARIABLE_FOR_POWER_FOR_BINARY_SEARCH = 1;			\
    ll VARIABLE_FOR_DIFFERENCE_FOR_BINARY_SEARCH = ( MAXIMUM ) - ANSWER; \
    while( VARIABLE_FOR_POWER_FOR_BINARY_SEARCH <= VARIABLE_FOR_DIFFERENCE_FOR_BINARY_SEARCH ){ \
      VARIABLE_FOR_POWER_FOR_BINARY_SEARCH *= 2;			\
    }									\
    VARIABLE_FOR_POWER_FOR_BINARY_SEARCH /= 2;				\
    ll VARIABLE_FOR_ANSWER_FOR_BINARY_SEARCH = ANSWER;			\
    while( VARIABLE_FOR_POWER_FOR_BINARY_SEARCH != 0 ){			\
      ANSWER = VARIABLE_FOR_ANSWER_FOR_BINARY_SEARCH + VARIABLE_FOR_POWER_FOR_BINARY_SEARCH; \
      VARIABLE_FOR_DIFFERENCE_FOR_BINARY_SEARCH = ( EXPRESSION ) - ( TARGET ); \
      if( VARIABLE_FOR_DIFFERENCE_FOR_BINARY_SEARCH == 0 ){		\
	VARIABLE_FOR_ANSWER_FOR_BINARY_SEARCH = ANSWER;			\
	break;								\
      } else if( VARIABLE_FOR_DIFFERENCE_FOR_BINARY_SEARCH < 0 ){	\
	VARIABLE_FOR_ANSWER_FOR_BINARY_SEARCH = ANSWER;			\
      }									\
      VARIABLE_FOR_POWER_FOR_BINARY_SEARCH /= 2;			\
    }									\
    ANSWER = VARIABLE_FOR_ANSWER_FOR_BINARY_SEARCH;			\
  }									\

// 圧縮用
#define TE template
#define TY typename
#define US using
#define ST static
#define IN inline
#define CL class
#define PU public
#define OP operator
#define CE constexpr
#define CO const
#define NE noexcept
#define RE return 
#define WH while
#define VO void
#define VE vector
#define LI list
#define BE begin
#define EN end
#define SZ size
#define MO move
#define TH this
#define CRI CO int&
#define CRUI CO uint&
#define CRL CO ll&

int LibrarySearch()
{
  CERR( "ライブラリーを探索しますか?[y/n]" );
  CIN( string , reply );
  if( reply == "n" ){
    CERR( "ライブラリーを探索せずに続行します。" );
    CERR( "" );
    return 0;
  } else if( reply != "y" ){
    CERR( "y/nのいずれかで答えてください。" );
    CERR( "終了します。" );
    CERR( "" );
    return -1;
  }
  CERR( "" );
  CERR( "ライブラリーを探索します。" );
  CERR( "問題の種類を番号で指定してください;" );
  vector<string> problems =
    {
      "数に関する問題。" ,
      "配列に関する問題。" ,
      "文字列に関する問題。" ,
      "順列に関する問題。" ,
      "矩形領域に関する問題。" ,
      "グラフに関する問題。" ,
      "格子点に関する問題。" ,
      "ナップサック問題。"
    };
  int problems_size = problems.size();
  FOR( i , 0 , problems_size ){
    CERR( i << ": " << problems[i] );
  }
  CIN( int , num );
  CERR( "" );
  if( num < 0 || num >= problems_size ){
    cerr << "返答は" << problems_size - 1 << "以下の非負整数にしてください。";
    CERR( "終了します。" );
    CERR( "" );
    return -1;
  } else if( num == 0 ){
    CERR( "入力は1つの数か、1つの数と法を表す数ですか?[y/n/c]" );
    cin >> reply;
    CERR( "" );
    if( reply == "y" ){
      CERR( "まずは小さい入力の場合を愚直に計算し、OEISで検索しましょう。" );
      CERR( "https://oeis.org/?language=japanese" );
      CERR( "" );
      CERR( "次に出力の定義と等価な式を考察しましょう。" );
      CERR( "- 単調ならば、冪乗や階乗を検討しましょう。" );
      CERR( "- 定義にp進法が使われていれば、探索アルゴリズムを検討しましょう。" );
      CERR( "- 入力が素数に近い場合に規則性があれば、p進付値、p進法、オイラー関数、約数の個数などを検討しましょう。" );
    } else if( reply == "n" ){
      CERR( "このケースのライブラリー探索は未実装です。" );
    } else if( reply == "c" ){
      CERR( "終了します。" );
      CERR( "" );
      return -1;
    } else {
      CERR( "y/n/cのいずれかで答えてください。" );
      CERR( "終了します。" );
      CERR( "" );
      return -1;
    }
    CERR( "" );
    CERR( "マルチテストケースの場合は以下の前計算を検討しましょう;" );
    CERR( "素数列挙、約数列挙、サブゴールとなる関係式を満たす解列挙。" );
  } else if( num == 3 ){
    CERR( "符号の計算は転倒数の計算に帰着させましょう。" );
    CERR( "符号と何かの積の和は行列式に帰着させましょう。余因子展開のメモ化再帰でO(N 2^N)です。" );
    CERR( "" );
    CERR( "1つの順列の転倒数は、" );
    CERR( "- O(N^2)が通るなら愚直な二重ループ" );
    CERR( "- O(N log_2 N)が必要なら可換群に対するBIT" );
    CERR( "  \\Mathematics\\Combinatorial\\Permutation" );
    CERR( "  \\Mathematics\\SetTheory\\DirectProduct\\AffineSpace\\BIT" );
    CERR( "で計算しましょう。" );
    CERR( "" );
    CERR( "条件を満たす順列全体をわたる転倒数の総和は、各i<jごとにそこで転倒が生じる順列の個数を計算し、その総和を取りましょう。" );
    CERR( "条件が良ければ、転倒が生じる順列の個数は転倒が生じるとは限らない順列の個数の半分となります。" );
  } else if( num == 4 ){
    CERR( "入力に各座標の壁や移動コストが与えられる迷路の問題は、BFSやDijkstraを検討しましょう。" );
    CERR( "\\Utility\\Search\\BreadthFirst" );
    CERR( "\\Utility\\Search\\Dijkstra" );
    CERR( "" );
    CERR( "入力に到達すべき点が複数与えられる最短経路問題は、HeldKarpや移動方法を分類するパラメータの全探策などを検討しましょう。" );
    CERR( "" );
    CERR( "その他の最小/最大化問題は、" );
    CERR( "- O(HW)が通るならば動的計画法" );
    CERR( "- O(HW)が通らないならば見方を変えて上の問題に帰着できないか" );
    CERR( "を検討しましょう。" );
    CERR( "" );
    CERR( "例えば迷路の攻略可能性は" );
    CERR( "- スタートとゴールが同一の弧状連結成分に属すこと" );
    CERR( "- スタートとゴールを分断する壁のパスの非存在性" );
    CERR( "などから翻訳できます。" );
  } else {
    CERR( "このケースのライブラリー探索は未実装です。" );
  }
  CERR( "" );
  CERR( "終了します。" );
  CERR( "" );
  return -1;
}

// 入力の範囲内で要件
// (1) eの値の各成分の第2成分が0以上またはinftyである。
// (2) inftyが0以上の数size_max個以下の和で表せるいかなる数よりも大きい。(-1などは不適)
// が成り立つ場合にのみサポート。
template <list<pair<int,int> > e(const int&),int size_max>
int Dijkstra( const int& i_start , const int& i_final , const int& size , const int& infty );
template <list<pair<int,int> > e(const int&),int size_max>
int Dijkstra( const int& i_start , const int& i_final , const int& size , const int& infty , list<int>& path );

template <list<pair<int,int> > e(const int&),int size_max>
int Dijkstra( const int& i_start , const int& i_final , const int& size , const int& infty )
{

  int weight[size_max];

  for( int i = 0 ; i < size ; i++ ){

    weight[i] = infty;

  }

  set<pair<int,int> > vertex{};
  vertex.insert( pair<int,int>( weight[i_start] = 0 , i_start ) );

  while( ! vertex.empty() ){

    auto itr_vertex = vertex.begin();
    const pair<int,int> v = *itr_vertex;
    const int& i = v.second;

    if( i == i_final ){

      break;

    }

    const int& t = v.first;
    weight[i] = -1;
    vertex.erase( itr_vertex );
    const list<pair<int,int> > ei = e( i );
    list<pair<int,int> > changed_vertex{};

    for( auto itr_ei = ei.begin() , end_ei = ei.end() ; itr_ei != end_ei ; itr_ei++ ){ 

      const int& j = itr_ei->first;
      int& weight_j = weight[j];

      if( weight_j != -1 ){

	const int& eij = itr_ei->second;
	const int temp = t + eij;
	assert( eij != -1 && temp != -1 && !( temp < eij ) && temp < infty ); 

	if( weight_j > temp ){

	  if( weight_j != infty ){

	    vertex.erase( pair<int,int>( weight_j , j ) );

	  }

	  changed_vertex.push_back( pair<int,int>( weight_j = temp , j ) ); 

	}

      }

    }

    for( auto itr_changed = changed_vertex.begin() , end_changed = changed_vertex.end() ; itr_changed != end_changed ; itr_changed++ ){ 

      vertex.insert( *itr_changed );

    }

  }

  return weight[i_final];
  
}

#ifdef DEBUG
  inline CEXPR( int , bound_H_W , 5 );
#else
  inline CEXPR( int , bound_H_W , 800 );
#endif

int H , W , H_minus , W_minus , k_start , k_final;
int A[bound_H_W][bound_H_W];
list<pair<int,int> > e( const int& k )
{
  list<pair<int,int> > edge{};
  if( k < k_start ){
    int i = k / W;
    int j = k % W;
    FOREQ( di , -1 , 1 ){
      FOREQ( dj , -1 , 1 ){
        int i_next = i + di;
	int j_next = j + dj;
	if(
	   1 <= i_next && i_next < H_minus &&
	   0 <= j_next && j_next < W &&
	   ( i_next != i || j_next != j )
	   ){
	  int& Aij_next = A[i_next][j_next];
	  if( Aij_next != -1 ){
	    edge.push_back( pair<int,int>( i_next * W + j_next , Aij_next ) );
	  }
	}
      }
    }
    if( j == W_minus ){
      edge.push_back( pair<int,int>( k_final , 0 ) );
    }
  } else if( k == k_start ){
  FOR( i , 1 , H_minus ){
    int& Ai0 = A[i][0];
      if( Ai0 != -1 ){
        edge.push_back( { i * W , A[i][0] } );
      }
    }
  }
  return edge;
}

int main()
{
  UNTIE;
  LIBRARY_SEARCH;
  SET_ASSERT( H , 3 , bound_H_W );
  SET_ASSERT( W , 3 , bound_H_W );
  H_minus = H - 1;
  W_minus = W - 1;
  k_start = H * W;
  k_final = k_start + 1;
  CEXPR( int , bound_Aij , 800 );
  FOR( i , 1 , H_minus ){
    int ( &Ai )[bound_H_W] = A[i];
    FOR( j , 0 , W ){
      CIN_ASSERT( Aij , -1 , bound_Aij );
      assert( Aij != 0 );
      Ai[j] = Aij;
    }
  }
  CEXPR( int , infty , bound_H_W * bound_H_W * bound_Aij );
  int answer = Dijkstra<e,bound_H_W * bound_H_W + 2>( k_start , k_final , k_final + 1 , infty );
  RETURN( answer < infty ? answer : -1 );
}
0