結果

問題 No.2318 Phys Bone Maker
ユーザー hliuser1hliuser1
提出日時 2023-06-09 05:57:16
言語 C++23
(gcc 12.3.0 + boost 1.83.0)
結果
RE  
実行時間 -
コード長 2,877 bytes
コンパイル時間 2,840 ms
コンパイル使用メモリ 265,800 KB
実行使用メモリ 12,288 KB
最終ジャッジ日時 2024-06-10 03:48:08
合計ジャッジ時間 12,199 ms
ジャッジサーバーID
(参考情報)
judge5 / judge4
このコードへのチャレンジ
(要ログイン)

テストケース

テストケース表示
入力 結果 実行時間
実行使用メモリ
testcase_00 AC 8 ms
7,408 KB
testcase_01 AC 8 ms
7,424 KB
testcase_02 AC 630 ms
12,288 KB
testcase_03 AC 18 ms
7,628 KB
testcase_04 RE -
testcase_05 AC 21 ms
7,808 KB
testcase_06 RE -
testcase_07 AC 11 ms
7,424 KB
testcase_08 AC 21 ms
7,808 KB
testcase_09 RE -
testcase_10 RE -
testcase_11 RE -
testcase_12 RE -
testcase_13 AC 29 ms
7,992 KB
testcase_14 RE -
testcase_15 RE -
testcase_16 RE -
testcase_17 AC 29 ms
7,924 KB
testcase_18 RE -
testcase_19 RE -
testcase_20 RE -
testcase_21 RE -
testcase_22 AC 20 ms
7,788 KB
testcase_23 RE -
testcase_24 RE -
testcase_25 RE -
testcase_26 AC 25 ms
8,064 KB
testcase_27 AC 28 ms
7,892 KB
testcase_28 RE -
testcase_29 RE -
testcase_30 RE -
testcase_31 RE -
testcase_32 RE -
testcase_33 AC 8 ms
7,364 KB
testcase_34 AC 24 ms
7,884 KB
testcase_35 AC 81 ms
9,264 KB
testcase_36 AC 313 ms
10,992 KB
testcase_37 AC 309 ms
10,728 KB
testcase_38 AC 321 ms
10,740 KB
testcase_39 AC 457 ms
11,972 KB
testcase_40 AC 457 ms
11,520 KB
testcase_41 AC 521 ms
12,288 KB
testcase_42 AC 549 ms
11,904 KB
testcase_43 AC 31 ms
8,064 KB
testcase_44 AC 86 ms
8,624 KB
testcase_45 AC 80 ms
8,648 KB
testcase_46 AC 544 ms
11,496 KB
testcase_47 AC 31 ms
8,008 KB
権限があれば一括ダウンロードができます

ソースコード

diff #

// https://yukicoder.me/problems/no/2318
// use the trick from Hossam & trainees.
// compute list of all primes up to sqrt(N)
// use repeated division to find any remaining "big" primes
#include <bits/stdc++.h>
#pragma GCC optimize("O3")
#pragma GCC target("sse4")
using namespace std;
using ll = long long;

static constexpr ll Q = 998244353;

template <typename K, typename V>
using Map = map<K, V>;

template <typename Int>
vector<Int> factorize(Int n, Int i=1) {
    vector<Int> f;
    f.reserve( sqrt(n) );
    for (; i*i < n; ++i)
        if (n % i == 0)
            f.push_back(i);
    i -= (i - (n / i) == 1);
    for (; i >= 1; i--)
        if (n % i == 0)
            f.push_back(n/i);
    return f;
}

struct sieve {
    static constexpr size_t N = 1000001;
    int spf[N] = {};
    sieve() {
        spf[0] = spf[1] = -1;
        for (int i = 3; i <= N; i += 2) spf[i] = i;
        for (int i = 2; i <= N; i += 2) spf[i] = 2;  // avoid lots of % later
        for (int i = 3; i*i <= N; i += 2) {
            if (spf[i] != i) continue;
            for (int j = i*i; j <= N; j += i)
                if (spf[j] == j)
                    spf[j] = i;
        }
    }
    inline bool operator()(int n) { return spf[n] == n; }
    template <class Int>
    inline Map<Int, int> factors(Int n) {
        Map<Int, int> mp;
        while (n != 1) {
            int p = spf[n];
            while (n % p == 0) {
                ++mp[p];
                n /= p;
            }
        }
        return mp;
    }
} prime;

ll primes[78498];  // list of all primes < 1e6

Map<ll, int> prime_factorize(ll x) {
    if (x < sieve::N)
        return prime.factors(x);
    Map<ll, int> mp;
    ll y = x;
    for (int p : primes) {
        while (y % p == 0) {
            y /= p;
            ++mp[p];
        }
        if (y == 1) break;
    }
    if (y != 1)
        mp[y] = 1;
    return mp;
}

signed main() {
    ll N;
    cin >> N;

    for (int z{-1}, i{2}; i <= (ll)sqrt(N); ++i)
        if ( prime(i) )
            primes[++z] = i;

    unordered_map<ll, ll> dp;
    // dp[x] = sum(dp[y]*Z forall y such that x%y==0) where Z is # of z s.t. lcm(y,z) = x

    dp[1] = 1;
    auto facts = factorize(N);
    int X = facts.size();

    vector<Map<ll,int>> prime_facs(X);
    for (int i = 0; i < X; ++i) {
        ll f = facts[i];
        prime_facs[i] = prime_factorize(f);
    }

    for (int i = 1; i < X; ++i) {
        ll x = facts[i];
        auto& pfx = prime_facs[i];
        for (int j = 0; j < i; ++j) {
            ll y = facts[j];
            if (x % y != 0) continue;

            ll ways = dp[y];  // # of z where lcm(y,z) = x
            auto& pfy = prime_facs[j];
            for (auto [p, cnt] : pfx)
                if (pfy[p] == cnt)
                    ways = ways * (cnt+1) % Q;

            dp[x] = (dp[x]+ways) % Q;
        }
    }
    cout << dp[N] << '\n';
}

0