結果
| 問題 |
No.2318 Phys Bone Maker
|
| コンテスト | |
| ユーザー |
|
| 提出日時 | 2023-06-09 05:57:52 |
| 言語 | C++23 (gcc 13.3.0 + boost 1.87.0) |
| 結果 |
AC
|
| 実行時間 | 756 ms / 3,000 ms |
| コード長 | 2,873 bytes |
| コンパイル時間 | 3,898 ms |
| コンパイル使用メモリ | 266,608 KB |
| 実行使用メモリ | 12,220 KB |
| 最終ジャッジ日時 | 2024-12-31 12:49:03 |
| 合計ジャッジ時間 | 11,780 ms |
|
ジャッジサーバーID (参考情報) |
judge3 / judge4 |
(要ログイン)
| ファイルパターン | 結果 |
|---|---|
| sample | AC * 3 |
| other | AC * 45 |
コンパイルメッセージ
In member function 'bool sieve::operator()(int)',
inlined from 'int main()' at main.cpp:80:19:
main.cpp:44:49: warning: iteration 999999 invokes undefined behavior [-Waggressive-loop-optimizations]
44 | inline bool operator()(int n) { return spf[n] == n; }
| ~~~~~^
main.cpp: In function 'int main()':
main.cpp:79:29: note: within this loop
79 | for (int z{-1}, i{2}; i <= sieve::N; ++i)
| ~~^~~~~~~~~~~
ソースコード
// https://yukicoder.me/problems/no/2318
// use the trick from Hossam & trainees.
// compute list of all primes up to sqrt(N)
// use repeated division to find any remaining "big" primes
#include <bits/stdc++.h>
#pragma GCC optimize("O3")
#pragma GCC target("sse4")
using namespace std;
using ll = long long;
static constexpr ll Q = 998244353;
template <typename K, typename V>
using Map = map<K, V>;
template <typename Int>
vector<Int> factorize(Int n, Int i=1) {
vector<Int> f;
f.reserve( sqrt(n) );
for (; i*i < n; ++i)
if (n % i == 0)
f.push_back(i);
i -= (i - (n / i) == 1);
for (; i >= 1; i--)
if (n % i == 0)
f.push_back(n/i);
return f;
}
struct sieve {
static constexpr size_t N = 1000001;
int spf[N] = {};
sieve() {
spf[0] = spf[1] = -1;
for (int i = 3; i <= N; i += 2) spf[i] = i;
for (int i = 2; i <= N; i += 2) spf[i] = 2; // avoid lots of % later
for (int i = 3; i*i <= N; i += 2) {
if (spf[i] != i) continue;
for (int j = i*i; j <= N; j += i)
if (spf[j] == j)
spf[j] = i;
}
}
inline bool operator()(int n) { return spf[n] == n; }
template <class Int>
inline Map<Int, int> factors(Int n) {
Map<Int, int> mp;
while (n != 1) {
int p = spf[n];
while (n % p == 0) {
++mp[p];
n /= p;
}
}
return mp;
}
} prime;
ll primes[78498]; // list of all primes < 1e6
Map<ll, int> prime_factorize(ll x) {
if (x < sieve::N)
return prime.factors(x);
Map<ll, int> mp;
ll y = x;
for (int p : primes) {
while (y % p == 0) {
y /= p;
++mp[p];
}
if (y == 1) break;
}
if (y != 1)
mp[y] = 1;
return mp;
}
signed main() {
for (int z{-1}, i{2}; i <= sieve::N; ++i)
if ( prime(i) )
primes[++z] = i;
ll N;
cin >> N;
unordered_map<ll, ll> dp;
// dp[x] = sum(dp[y]*Z forall y such that x%y==0) where Z is # of z s.t. lcm(y,z) = x
dp[1] = 1;
auto facts = factorize(N);
int X = facts.size();
vector<Map<ll,int>> prime_facs(X);
for (int i = 0; i < X; ++i) {
ll f = facts[i];
prime_facs[i] = prime_factorize(f);
}
for (int i = 1; i < X; ++i) {
ll x = facts[i];
auto& pfx = prime_facs[i];
for (int j = 0; j < i; ++j) {
ll y = facts[j];
if (x % y != 0) continue;
ll ways = dp[y]; // # of z where lcm(y,z) = x
auto& pfy = prime_facs[j];
for (auto [p, cnt] : pfx)
if (pfy[p] == cnt)
ways = ways * (cnt+1) % Q;
dp[x] = (dp[x]+ways) % Q;
}
}
cout << dp[N] << '\n';
}