結果
問題 | No.1873 Bracket Swapping |
ユーザー |
|
提出日時 | 2023-06-09 19:47:18 |
言語 | PyPy3 (7.3.15) |
結果 |
AC
|
実行時間 | 1,719 ms / 2,000 ms |
コード長 | 1,713 bytes |
コンパイル時間 | 314 ms |
コンパイル使用メモリ | 82,852 KB |
実行使用メモリ | 80,588 KB |
最終ジャッジ日時 | 2025-01-02 00:16:58 |
合計ジャッジ時間 | 18,173 ms |
ジャッジサーバーID (参考情報) |
judge1 / judge2 |
(要ログイン)
ファイルパターン | 結果 |
---|---|
sample | AC * 3 |
other | AC * 27 |
ソースコード
class Matrix(): def __init__(self, MOD=-1): self.MOD = MOD def mul(self, a, b): L, M, N = len(a), len(b), len(b[0]) assert len(a[0]) == M c = [[0] * N for _ in range(L)] for i in range(L): for j in range(N): for k in range(M): c[i][j] += a[i][k] * b[k][j] if self.MOD != -1: c[i][j] %= self.MOD return c def pow(self, x, n): y = [[0] * len(x) for _ in range(len(x))] for i in range(len(x)): y[i][i] = 1 while n > 0: if n & 1: y = self.mul(x, y) x = self.mul(x, x) n >>= 1 return y MOD = 998244353 mat = Matrix(MOD) S = input() N = len(S) // 2 K = int(input()) dp = [[0] * (2 * N + 1) for _ in range(2 * N + 1)] dp[0][0] = 1 for i in range(2 * N): ndp = [[0] * (2 * N + 1) for _ in range(2 * N + 1)] for j in range(2 * N + 1): for k in range(2 * N + 1): if S[i] == '(': if j > 0: ndp[j][k] += dp[j - 1][k] if k > 0 and j < 2 * N: ndp[j][k] += dp[j + 1][k - 1] else: if j > 0 and k > 0: ndp[j][k] += dp[j - 1][k - 1] if j < 2 * N: ndp[j][k] += dp[j + 1][k] ndp[j][k] %= MOD dp = ndp res1 = dp[0][::2] A = [[0] * (N + 1) for _ in range(N + 1)] for i in range(N + 1): A[i][i] = N * (2 * N - 1) - i * i - (N - i) * (N - i) if i > 0: A[i - 1][i] = i * i if i < N: A[i + 1][i] = (N - i) * (N - i) B = mat.pow(A, K) res2 = B[0] ans = 0 for i in range(N + 1): ans += res1[i] * res2[i] ans %= MOD print(ans)