結果

問題 No.2344 (l+r)^2
ユーザー noya2noya2
提出日時 2023-06-10 00:14:25
言語 C++17
(gcc 12.3.0 + boost 1.83.0)
結果
WA  
実行時間 -
コード長 9,733 bytes
コンパイル時間 5,682 ms
コンパイル使用メモリ 291,184 KB
実行使用メモリ 30,380 KB
最終ジャッジ日時 2024-06-10 15:11:41
合計ジャッジ時間 6,884 ms
ジャッジサーバーID
(参考情報)
judge2 / judge5
このコードへのチャレンジ
(要ログイン)

テストケース

テストケース表示
入力 結果 実行時間
実行使用メモリ
testcase_00 AC 2 ms
5,248 KB
testcase_01 AC 63 ms
5,248 KB
testcase_02 AC 14 ms
5,376 KB
testcase_03 AC 15 ms
5,376 KB
testcase_04 AC 15 ms
5,376 KB
testcase_05 AC 15 ms
5,376 KB
testcase_06 AC 15 ms
5,376 KB
testcase_07 WA -
testcase_08 AC 143 ms
16,728 KB
testcase_09 WA -
testcase_10 WA -
testcase_11 WA -
testcase_12 WA -
権限があれば一括ダウンロードができます

ソースコード

diff #

#line 1 "prayground.cpp"
#include<bits/stdc++.h>
#include<atcoder/all>
#define rep(i,n) for (int i = 0; i < int(n); ++i)
#define repp(i,m,n) for (int i = m; i < int(n); ++i)
#define reb(i,n) for (int i = int(n)-1; i >= 0; --i)
#define all(v) v.begin(),v.end()
using namespace std;
using namespace atcoder;
using ll = long long;
using ull = unsigned long long;
using ld = long double;
using P = pair<int, int>;
using PL = pair<long long, long long>;
using pdd = pair<long double, long double>;
using pil = pair<int,ll>;
using pli = pair<ll,int>;
template<class T>istream &operator>>(istream &is,vector<T> &v){for(auto &e:v)is>>e;return is;}
template<typename T>bool range(T a,T b,T x){return (a<=x&&x<b);}
template<typename T>bool rrange(T a,T b,T c,T d,T x,T y){return (range(a,c,x)&&range(b,d,y));}
template<typename T> T rev(const T& str_or_vec){T res = str_or_vec; reverse(res.begin(),res.end()); return res; }
template<typename T>bool chmin(T &a,const T &b){if(a>b){a=b;return true;}return false;}
template<typename T>bool chmax(T &a,const T &b){if(a<b){a=b;return true;}return false;}
template<typename T>void uniq(vector<T> &v){sort(v.begin(),v.end());v.erase(unique(v.begin(),v.end()),v.end());}
template<typename T1, typename T2>void print(pair<T1,T2> a);
template<typename T>void print(vector<T> v);
template<typename T>void print(vector<vector<T>> v);
void print(){ putchar(' '); }
void print(bool a){ printf("%d", a); }
void print(int a){ printf("%d", a); }
void print(long a){ printf("%ld", a); }
void print(long long a){ printf("%lld", a); }
void print(char a){ printf("%c", a); }
void print(char a[]){ printf("%s", a); }
void print(const char a[]){ printf("%s", a); }
void print(long double a){ printf("%.15Lf", a); }
void print(const string& a){ for(auto&& i : a) print(i); }
void print(unsigned int a){ printf("%u", a); }
void print(unsigned long long a) { printf("%llu", a); }
template<class T> void print(const T& a){ cout << a; }
int out(){ putchar('\n'); return 0; }
template<class T> int out(const T& t){ print(t); putchar('\n'); return 0; }
template<class Head, class... Tail> int out(const Head& head, const Tail&... tail){ print(head); putchar(' '); out(tail...); return 0; }
template<typename T1,typename T2>void print(pair<T1,T2> a){print(a.first);print(),print(a.second);}
template<typename T>void print(vector<T> v){for(auto ite=v.begin();ite!=v.end();){print(*ite);if(++ite!=v.end())print();}}
template<typename T>void print(vector<vector<T>> v){for(auto ite=v.begin();ite!=v.end();){print(*ite);if(++ite!=v.end())out();}}
void yes(){out("Yes");}
void no (){out("No");}
void yn (bool t){if(t)yes();else no();}
void fast_io(){cin.tie(0); ios::sync_with_stdio(0); cout<<fixed<<setprecision(20);}
void o(){out("!?");}

namespace noya2{

const int INF = 1001001007;
const long long mod1 = 998244353;
const long long mod2 = 1000000007;
const long long inf = 2e18;
const long double pi = 3.14159265358979323;
const long double eps = 1e-7;
const vector<int> dx = {0,1,0,-1,1,1,-1,-1};
const vector<int> dy = {1,0,-1,0,1,-1,-1,1};
const string ALP = "ABCDEFGHIJKLMNOPQRSTUVWXYZ";
const string alp = "abcdefghijklmnopqrstuvwxyz";
const string NUM = "0123456789";

} // namespace noya2
using namespace noya2;

using mint = modint998244353;
//using mint = modint1000000007;
//using mint = modint;
void out(mint a){out(a.val());}
void out(vector<mint> a){vector<ll> b(a.size()); rep(i,a.size()) b[i] = a[i].val(); out(b);}
void out(vector<vector<mint>> a){for (auto v : a) out(v);}


#line 2 "convolution.hpp"

#line 2 "NTT.hpp"

#line 4 "NTT.hpp"

template<long long m>
struct NTT{
    using mint = static_modint<m>;
    NTT(){init();};
    static void FFT(vector<mint> &a){
        int n = a.size();
        int siz = 1;
        while (siz < n) siz <<= 1;
        a.resize(siz);
        fft(a,1);
    }
    static void IFFT(vector<mint> &a){
        int n = a.size();
        int siz = 1;
        while (siz < n) siz <<= 1;
        mint div = mint(siz).inv();
        a.resize(siz);
        fft(a,-1);
        for (auto &x : a) x *= div;
    }
    static void DFT(vector<mint> &a, int inv){fft(a,inv);}
    static vector<long long> multiply(vector<long long> a, vector<long long> b){
        vector<mint> na(a.size()), nb(b.size());
        for (int i = 0; i < (int)a.size(); i++) na[i] = a[i];
        for (int i = 0; i < (int)b.size(); i++) nb[i] = b[i];
        vector<mint> nc = multiply(na,nb);
        vector<long long> c(nc.size());
        for (int i = 0; i < (int)nc.size(); i++) c[i] = nc[i].val();
        return c;
    }
    static vector<mint> multiply(vector<mint> a, vector<mint> b){
        int n = a.size() + b.size() - 1;
        int siz = 1;
        while (siz < n) siz <<= 1;
        a.resize(siz), b.resize(siz);
        FFT(a), FFT(b);
        for (int i = 0; i < siz; i++) a[i] *= b[i];
        IFFT(a);
        a.resize(n);
        return a;
    }
  private:
    static static_modint<m> g;
    static int limit;
    static vector<static_modint<m>>root, inv_root;
    static constexpr mint primitive_root(const long long &mo){
        if (mo == 2)         return mint(1);
        if (mo == 167772161) return mint(3);
        if (mo == 469762049) return mint(3);
        if (mo == 754974721) return mint(11);
        if (mo == 998244353) return mint(3);
        if (mo == 1224736769)return mint(3);
        return mint(); // atode kaku
    }
    static void init(){
        if (!root.empty()) return ;
        g = primitive_root(m);
        long long now = m-1;
        while ((now & 1) == 0) now >>= 1, limit++;
        root.resize(limit+1,1), inv_root.resize(limit+1,1);
        root[limit] = g.pow(now), inv_root[limit] /= root[limit];
        for(int i = limit-1; i >= 0; i--){
            root[i] = root[i+1] * root[i+1];
            inv_root[i] = inv_root[i+1] * inv_root[i+1];
        }
    }
    static int bits_msb(int v){
        v = v | (v >>  1);
        v = v | (v >>  2);
        v = v | (v >>  4);
        v = v | (v >>  8);
        v = v | (v >> 16);
        return v ^ (v >> 1);
    }
    static int pre(int v, int n){
        return v ^ (n - bits_msb(v));
    }
    static void fft(vector<mint> &a, int inv){
        init();
        int n = a.size();
        if (n == 1) return ;
        int d = 0;
        while ((n >> d & 1) == 0) d++;
        vector<int> idx(n);
        idx[n-1] = n-1;
        for (int i = n-2; i >= 0; i--) idx[i] = pre(idx[i+1],n);
        vector<mint> na = a;
        for (int i = 0; i < n; i++) a[i] = na[idx[i]];
        for (int i = 0; i < d; i++){
            int width = 1 << (i+1);
            vector<mint> gp(width/2,1);
            if (inv ==  1) for (int j = 0; j < width/2-1; j++) gp[j+1] = gp[j] * root[i+1];
            if (inv == -1) for (int j = 0; j < width/2-1; j++) gp[j+1] = gp[j] * inv_root[i+1];
            for (int j = 0; j < n; j += width){
                for (int k = 0; k < width/2; k++){
                    mint lhs = a[j+k], rhs = a[j+k+width/2] * gp[k];
                    a[j+k] = lhs + rhs;
                    a[j+k+width/2] = lhs - rhs;
                }
            }
        }
    }
};
template<long long m>
int NTT<m>::limit=0;
template<long long m>
vector<static_modint<m>>NTT<m>::root=vector<static_modint<m>>();
template<long long m>
vector<static_modint<m>>NTT<m>::inv_root=vector<static_modint<m>>();
template<long long m>
static_modint<m>NTT<m>::g=static_modint<m>();
#line 5 "convolution.hpp"

namespace noya2{

using ll = long long;
using namespace std;

template<typename T>
vector<T> convolution(vector<T> a, vector<T> b){ // T = ll, modint998244353
    return NTT<998244353>::multiply(a,b);
}

template<ll MOD>
vector<ll> arbitrary_mod_convolution(vector<ll> a, vector<ll> b){
    static constexpr ll m1 = 167772161, m2 = 469762049, m3 = 1224736769;
    static constexpr ll m1_inv_m2 = 104391568, m12_inv_m3 = 721017874;
    const ll m12_mod = 78812994116517889LL % MOD;
    auto c1 = NTT<m1>::multiply(a,b);
    auto c2 = NTT<m2>::multiply(a,b);
    auto c3 = NTT<m3>::multiply(a,b);
    vector<ll> res(c1.size());
    for (int i = 0; i < (int)res.size(); i++){
        ll t1 = c1[i];
        ll t2 = (c2[i] - c1[i]) * m1_inv_m2 % m2;
        if (t2 < 0) t2 += m2;
        ll t3 = (c3[i] - (t1 + t2 * m1) % m3) * m12_inv_m3 % m3;
        if (t3 < 0) t3 += m3;
        res[i] = (t1 + t2 * m1 + t3 * m12_mod) % MOD;
        if (res[i] < 0) res[i] += MOD;
    }
    return res;
}


} // namespace noya2
#line 78 "prayground.cpp"

void solve(){
    int n, m; cin >> n >> m;
    vector<ll> a(n); cin >> a;
    const ll md = 1<<m;
    if (n <= 100){
        rep(i,n-1){
            vector<ll> b(n-1-i);
            rep(j,n-1-i) b[j] = (a[j]+a[j+1])*(a[j]+a[j+1]) % md;
            swap(a,b);
        }
        out(a[0]);
        return ;
    }
    int nn = n-100;
    vector<ll> b(nn+1,1);
    auto get = [&](int x){
        int t = 0;
        while ((x & 1) == 0){
            t++;
            x >>= 1;
        }
        return P(x,t);
    };
    ll cur = 1;
    int ni = 0;
    for (int i = 1; i <= nn; i++){
        auto [pv, pt] = get(nn+1-i);
        cur = cur * pv % md;
        ni += pt;
        auto [qv, qt] = get(i);
        cur = cur * inv_mod(qv,md) % md;
        ni -= qt;
        if (ni >= m) b[i] = 0;
        else b[i] = (cur << ni) % md;
    }
    rep(i,nn+1) if (i % 2 == 1) b[i] = (md-b[i])%md;
    auto c = arbitrary_mod_convolution<1LL<<30>(a,b);
    for (auto &x : c) x %= md;
    int siz = c.size();
    vector<ll> d(100);
    reb(i,100) d[i] = c[siz-1-i];
    rep(i,99){
        vector<ll> e(99-i);
        rep(j,99-i) e[j] = (d[j]+d[j+1])*(d[j]+d[j+1]) % md;
        swap(e,d);
    }
    out(d[0]);
}


int main(){
    fast_io();
    int t = 1; cin >> t;
    while(t--) solve();
}
0