結果
| 問題 |
No.2582 Random Average^K
|
| コンテスト | |
| ユーザー |
遭難者
|
| 提出日時 | 2023-06-11 01:09:49 |
| 言語 | C++23 (gcc 13.3.0 + boost 1.87.0) |
| 結果 |
RE
|
| 実行時間 | - |
| コード長 | 9,419 bytes |
| コンパイル時間 | 6,201 ms |
| コンパイル使用メモリ | 328,008 KB |
| 実行使用メモリ | 6,948 KB |
| 最終ジャッジ日時 | 2024-09-27 03:48:56 |
| 合計ジャッジ時間 | 8,428 ms |
|
ジャッジサーバーID (参考情報) |
judge2 / judge1 |
(要ログイン)
| ファイルパターン | 結果 |
|---|---|
| sample | AC * 3 |
| other | AC * 5 RE * 10 |
ソースコード
#include <bits/stdc++.h>
#include <atcoder/all>
#define rep(i, n) for (int i = 0; i < n; i++)
#define ALL(a) a.begin(), a.end()
#define ll long long
using namespace std;
constexpr int mod = 998244353;
namespace FastFourierTransform
{
using real = double;
struct C
{
real x, y;
C() : x(0), y(0) {}
C(real x, real y) : x(x), y(y) {}
inline C operator+(const C &c) const { return C(x + c.x, y + c.y); }
inline C operator-(const C &c) const { return C(x - c.x, y - c.y); }
inline C operator*(const C &c) const { return C(x * c.x - y * c.y, x * c.y + y * c.x); }
inline C conj() const { return C(x, -y); }
};
const real PI = acosl(-1);
int base = 1;
vector<C> rts = {{0, 0}, {1, 0}};
vector<int> rev = {0, 1};
void ensure_base(int nbase)
{
if (nbase <= base)
return;
rev.resize(1 << nbase);
rts.resize(1 << nbase);
for (int i = 0; i < (1 << nbase); i++)
{
rev[i] = (rev[i >> 1] >> 1) + ((i & 1) << (nbase - 1));
}
while (base < nbase)
{
real angle = PI * 2.0 / (1 << (base + 1));
for (int i = 1 << (base - 1); i < (1 << base); i++)
{
rts[i << 1] = rts[i];
real angle_i = angle * (2 * i + 1 - (1 << base));
rts[(i << 1) + 1] = C(cos(angle_i), sin(angle_i));
}
++base;
}
}
void fft(vector<C> &a, int n)
{
assert((n & (n - 1)) == 0);
int zeros = __builtin_ctz(n);
ensure_base(zeros);
int shift = base - zeros;
for (int i = 0; i < n; i++)
{
if (i < (rev[i] >> shift))
{
swap(a[i], a[rev[i] >> shift]);
}
}
for (int k = 1; k < n; k <<= 1)
{
for (int i = 0; i < n; i += 2 * k)
{
for (int j = 0; j < k; j++)
{
C z = a[i + j + k] * rts[j + k];
a[i + j + k] = a[i + j] - z;
a[i + j] = a[i + j] + z;
}
}
}
}
vector<int64_t> multiply(const vector<int> &a, const vector<int> &b)
{
int need = (int)a.size() + (int)b.size() - 1;
int nbase = 1;
while ((1 << nbase) < need)
nbase++;
ensure_base(nbase);
int sz = 1 << nbase;
vector<C> fa(sz);
for (int i = 0; i < sz; i++)
{
int x = (i < (int)a.size() ? a[i] : 0);
int y = (i < (int)b.size() ? b[i] : 0);
fa[i] = C(x, y);
}
fft(fa, sz);
C r(0, -0.25 / (sz >> 1)), s(0, 1), t(0.5, 0);
for (int i = 0; i <= (sz >> 1); i++)
{
int j = (sz - i) & (sz - 1);
C z = (fa[j] * fa[j] - (fa[i] * fa[i]).conj()) * r;
fa[j] = (fa[i] * fa[i] - (fa[j] * fa[j]).conj()) * r;
fa[i] = z;
}
for (int i = 0; i < (sz >> 1); i++)
{
C A0 = (fa[i] + fa[i + (sz >> 1)]) * t;
C A1 = (fa[i] - fa[i + (sz >> 1)]) * t * rts[(sz >> 1) + i];
fa[i] = A0 + A1 * s;
}
fft(fa, sz >> 1);
vector<int64_t> ret(need);
for (int i = 0; i < need; i++)
{
ret[i] = llround(i & 1 ? fa[i >> 1].y : fa[i >> 1].x);
}
return ret;
}
};
template <int mod>
struct ModInt
{
int x;
ModInt() : x(0) {}
ModInt(int64_t y) : x(y >= 0 ? y % mod : (mod - (-y) % mod) % mod) {}
ModInt &operator+=(const ModInt &p)
{
if ((x += p.x) >= mod)
x -= mod;
return *this;
}
ModInt &operator-=(const ModInt &p)
{
if ((x += mod - p.x) >= mod)
x -= mod;
return *this;
}
ModInt &operator*=(const ModInt &p)
{
x = (int)(1LL * x * p.x % mod);
return *this;
}
ModInt &operator/=(const ModInt &p)
{
*this *= p.inverse();
return *this;
}
ModInt operator-() const { return ModInt(-x); }
ModInt operator+(const ModInt &p) const { return ModInt(*this) += p; }
ModInt operator-(const ModInt &p) const { return ModInt(*this) -= p; }
ModInt operator*(const ModInt &p) const { return ModInt(*this) *= p; }
ModInt operator/(const ModInt &p) const { return ModInt(*this) /= p; }
bool operator==(const ModInt &p) const { return x == p.x; }
bool operator!=(const ModInt &p) const { return x != p.x; }
ModInt inverse() const
{
int a = x, b = mod, u = 1, v = 0, t;
while (b > 0)
{
t = a / b;
swap(a -= t * b, b);
swap(u -= t * v, v);
}
return ModInt(u);
}
ModInt pow(int64_t n) const
{
ModInt ret(1), mul(x);
while (n > 0)
{
if (n & 1)
ret *= mul;
mul *= mul;
n >>= 1;
}
return ret;
}
friend ostream &operator<<(ostream &os, const ModInt &p)
{
return os << p.x;
}
friend istream &operator>>(istream &is, ModInt &a)
{
int64_t t;
is >> t;
a = ModInt<mod>(t);
return (is);
}
static int get_mod() { return mod; }
};
using modint = ModInt<mod>;
template <typename T>
struct ArbitraryModConvolution
{
using real = FastFourierTransform::real;
using C = FastFourierTransform::C;
ArbitraryModConvolution() = default;
vector<T> multiply(const vector<T> &a, const vector<T> &b, int need = -1)
{
if (need == -1)
need = a.size() + b.size() - 1;
int nbase = 0;
while ((1 << nbase) < need)
nbase++;
FastFourierTransform::ensure_base(nbase);
int sz = 1 << nbase;
vector<C> fa(sz);
for (int i = 0; i < a.size(); i++)
{
fa[i] = C(a[i].x & ((1 << 15) - 1), a[i].x >> 15);
}
fft(fa, sz);
vector<C> fb(sz);
for (int i = 0; i < b.size(); i++)
{
fb[i] = C(b[i].x & ((1 << 15) - 1), b[i].x >> 15);
}
fft(fb, sz);
real ratio = 0.25 / sz;
C r2(0, -1), r3(ratio, 0), r4(0, -ratio), r5(0, 1);
for (int i = 0; i <= (sz >> 1); i++)
{
int j = (sz - i) & (sz - 1);
C a1 = (fa[i] + fa[j].conj());
C a2 = (fa[i] - fa[j].conj()) * r2;
C b1 = (fb[i] + fb[j].conj()) * r3;
C b2 = (fb[i] - fb[j].conj()) * r4;
if (i != j)
{
C c1 = (fa[j] + fa[i].conj());
C c2 = (fa[j] - fa[i].conj()) * r2;
C d1 = (fb[j] + fb[i].conj()) * r3;
C d2 = (fb[j] - fb[i].conj()) * r4;
fa[i] = c1 * d1 + c2 * d2 * r5;
fb[i] = c1 * d2 + c2 * d1;
}
fa[j] = a1 * b1 + a2 * b2 * r5;
fb[j] = a1 * b2 + a2 * b1;
}
fft(fa, sz);
fft(fb, sz);
vector<T> ret(need);
for (int i = 0; i < need; i++)
{
int64_t aa = llround(fa[i].x);
int64_t bb = llround(fb[i].x);
int64_t cc = llround(fa[i].y);
aa = T(aa).x, bb = T(bb).x, cc = T(cc).x;
ret[i] = aa + (bb << 15) + (cc << 30);
}
return ret;
}
};
template <typename T>
struct Combination
{
vector<T> _fact, _rfact, _inv;
Combination(int sz) : _fact(sz + 1), _rfact(sz + 1), _inv(sz + 1)
{
_fact[0] = _rfact[sz] = _inv[0] = 1;
for (int i = 1; i <= sz; i++)
_fact[i] = _fact[i - 1] * i;
_rfact[sz] /= _fact[sz];
for (int i = sz - 1; i >= 0; i--)
_rfact[i] = _rfact[i + 1] * (i + 1);
for (int i = 1; i <= sz; i++)
_inv[i] = _rfact[i] * _fact[i - 1];
}
inline T fact(int k) const { return _fact[k]; }
inline T rfact(int k) const { return _rfact[k]; }
inline T inv(int k) const { return _inv[k]; }
T P(int n, int r) const
{
if (r < 0 || n < r)
return 0;
return fact(n) * rfact(n - r);
}
T C(int p, int q) const
{
if (q < 0 || p < q)
return 0;
return fact(p) * rfact(q) * rfact(p - q);
}
T H(int n, int r) const
{
if (n < 0 || r < 0)
return (0);
return r == 0 ? 1 : C(n + r - 1, r);
}
};
template <typename T>
T factorial(int64_t n)
{
if (n >= mod)
return 0;
if (n == 0)
return 1;
const int sn = sqrt(n);
const T sn_inv = T(1) / sn;
Combination<modint> comb(sn);
using P = vector<T>;
ArbitraryModConvolution<modint> fft;
auto shift = [&](const P &f, T dx)
{
int n = (int)f.size();
T a = dx * sn_inv;
auto p1 = P(f);
for (int i = 0; i < n; i++)
{
T d = comb.rfact(i) * comb.rfact((n - 1) - i);
if (((n - 1 - i) & 1))
d = -d;
p1[i] *= d;
}
auto p2 = P(2 * n);
for (int i = 0; i < p2.size(); i++)
{
p2[i] = (a.x + i - n) <= 0 ? 1 : a + i - n;
}
for (int i = 1; i < p2.size(); i++)
{
p2[i] *= p2[i - 1];
}
T prod = p2[2 * n - 1];
T prod_inv = T(1) / prod;
for (int i = 2 * n - 1; i > 0; --i)
{
p2[i] = prod_inv * p2[i - 1];
prod_inv *= a + i - n;
}
p2[0] = prod_inv;
auto p3 = fft.multiply(p1, p2, (int)p2.size());
p1 = P(p3.begin() + p1.size(), p3.begin() + p2.size());
prod = 1;
for (int i = 0; i < n; i++)
{
prod *= a + n - 1 - i;
}
for (int i = n - 1; i >= 0; --i)
{
p1[i] *= prod;
prod *= p2[n + i] * (a + i - n);
}
return p1;
};
function<P(int)> rec = [&](int64_t n)
{
if (n == 1)
return P({1, 1 + sn});
int nh = n >> 1;
auto a1 = rec(nh);
auto a2 = shift(a1, nh);
auto b1 = shift(a1, sn * nh);
auto b2 = shift(a1, sn * nh + nh);
for (int i = 0; i <= nh; i++)
a1[i] *= a2[i];
for (int i = 1; i <= nh; i++)
a1.emplace_back(b1[i] * b2[i]);
if (n & 1)
{
for (int64_t i = 0; i < n; i++)
{
a1[i] *= n + 1LL * sn * i;
}
T prod = 1;
for (int64_t i = 1LL * n * sn; i < 1LL * n * sn + n; i++)
{
prod *= (i + 1);
}
a1.push_back(prod);
}
return a1;
};
auto vs = rec(sn);
T ret = 1;
for (int64_t i = 0; i < sn; i++)
ret *= vs[i];
for (int64_t i = 1LL * sn * sn + 1; i <= n; i++)
ret *= i;
return ret;
}
modint fac[5050], inv[5050];
void solve()
{
fac[0] = 1;
for (int i = 1; i < 5050; i++)
fac[i] = modint(i) * fac[i - 1];
inv[5049] = fac[5049].inverse();
for (int i = 5049; i > 0; i--)
inv[i - 1] = modint(i) * inv[i];
int n, m;
cin >> n >> m;
modint ans = 0;
for (int k = 1; k <= n; k++)
{
modint mul = fac[n] * inv[k] * inv[n - k];
if ((n - k) & 1)
mul = -mul;
mul *= modint(k).pow(n + m);
ans += mul;
}
ans *= factorial<modint>(m);
ans /= factorial<modint>(n + m) * modint(n).pow(m);
cout << ans << '\n';
}
int main()
{
cin.tie(nullptr);
ios::sync_with_stdio(false);
cout << fixed << setprecision(13);
solve();
return 0;
}
遭難者