結果
問題 | No.2378 Cards and Subsequences |
ユーザー | yamate11 |
提出日時 | 2023-06-13 21:07:50 |
言語 | C++17 (gcc 12.3.0 + boost 1.83.0) |
結果 |
TLE
|
実行時間 | - |
コード長 | 13,181 bytes |
コンパイル時間 | 2,223 ms |
コンパイル使用メモリ | 217,640 KB |
実行使用メモリ | 10,624 KB |
最終ジャッジ日時 | 2024-07-21 16:26:19 |
合計ジャッジ時間 | 6,847 ms |
ジャッジサーバーID (参考情報) |
judge3 / judge1 |
(要ログイン)
テストケース
テストケース表示入力 | 結果 | 実行時間 実行使用メモリ |
---|---|---|
testcase_00 | AC | 2 ms
10,624 KB |
testcase_01 | AC | 2 ms
5,376 KB |
testcase_02 | AC | 2 ms
5,376 KB |
testcase_03 | AC | 2 ms
5,376 KB |
testcase_04 | AC | 568 ms
5,760 KB |
testcase_05 | AC | 566 ms
5,760 KB |
testcase_06 | TLE | - |
testcase_07 | -- | - |
testcase_08 | -- | - |
testcase_09 | -- | - |
testcase_10 | -- | - |
testcase_11 | -- | - |
testcase_12 | -- | - |
testcase_13 | -- | - |
testcase_14 | -- | - |
testcase_15 | -- | - |
testcase_16 | -- | - |
testcase_17 | -- | - |
testcase_18 | -- | - |
testcase_19 | -- | - |
testcase_20 | -- | - |
testcase_21 | -- | - |
testcase_22 | -- | - |
testcase_23 | -- | - |
testcase_24 | -- | - |
testcase_25 | -- | - |
testcase_26 | -- | - |
testcase_27 | -- | - |
testcase_28 | -- | - |
testcase_29 | -- | - |
testcase_30 | -- | - |
testcase_31 | -- | - |
testcase_32 | -- | - |
testcase_33 | -- | - |
testcase_34 | -- | - |
testcase_35 | -- | - |
testcase_36 | -- | - |
testcase_37 | -- | - |
testcase_38 | -- | - |
testcase_39 | -- | - |
testcase_40 | -- | - |
ソースコード
#include <bits/stdc++.h> #include <cassert> using namespace std; using ll = long long int; using pll = pair<ll, ll>; // #include <atcoder/all> // using namespace atcoder; #define REP(i, a, b) for (ll i = (a); i < (b); i++) #define REPrev(i, a, b) for (ll i = (a); i >= (b); i--) #define ALL(coll) (coll).begin(), (coll).end() #define SIZE(v) ((ll)((v).size())) #define REPOUT(i, a, b, exp, sep) REP(i, (a), (b)) cout << (exp) << (i + 1 == (b) ? "" : (sep)); cout << "\n" // @@ !! LIM(mod) // ---- inserted library file algOp.cc // Common definitions // zero, one, inverse template<typename T> constexpr T zero(const T& t) { if constexpr (is_integral_v<T> || is_floating_point_v<T>) { return (T)0; } else { return t.zero(); } } template<typename T> constexpr T one(const T& t) { if constexpr (is_integral_v<T> || is_floating_point_v<T>) { return (T)1; } else { return t.one(); } } template<typename T> constexpr T inverse(const T& t) { if constexpr (is_floating_point_v<T>) { return 1.0 / t; } else { return t.inverse(); } } // begin -- detection ideom // cf. https://blog.tartanllama.xyz/detection-idiom/ namespace detail { template <template <class...> class Trait, class Enabler, class... Args> struct is_detected : false_type{}; template <template <class...> class Trait, class... Args> struct is_detected<Trait, void_t<Trait<Args...>>, Args...> : true_type{}; } template <template <class...> class Trait, class... Args> using is_detected = typename detail::is_detected<Trait, void, Args...>::type; // end -- detection ideom template<typename T> // using subst_add_t = decltype(T::subst_add(declval<typename T::value_type &>(), declval<typename T::value_type>())); using subst_add_t = decltype(T::subst_add); template<typename T> using has_subst_add = is_detected<subst_add_t, T>; template<typename T> using add_t = decltype(T::add); template<typename T> using has_add = is_detected<add_t, T>; template<typename T> using subst_mult_t = decltype(T::subst_mult); template<typename T> using has_subst_mult = is_detected<subst_mult_t, T>; template<typename T> using mult_t = decltype(T::mult); template<typename T> using has_mult = is_detected<mult_t, T>; template<typename T> using subst_subt_t = decltype(T::subst_subt); template<typename T> using has_subst_subt = is_detected<subst_subt_t, T>; template<typename T> using subt_t = decltype(T::subt); template<typename T> using has_subt = is_detected<subt_t, T>; template <typename Opdef> struct MyAlg { using T = typename Opdef::value_type; using value_type = T; T v; MyAlg() {} MyAlg(const T& v_) : v(v_) {} MyAlg(T&& v_) : v(move(v_)) {} bool operator==(MyAlg o) const { return v == o.v; } bool operator!=(MyAlg o) const { return v != o.v; } operator T() const { return v; } MyAlg zero() const { return MyAlg(Opdef::zero(v)); } MyAlg one() const { return MyAlg(Opdef::one(v)); } MyAlg inverse() const { return MyAlg(Opdef::inverse(v)); } MyAlg operator/=(const MyAlg& o) { return *this *= o.inverse(); } MyAlg operator/(const MyAlg& o) const { return (*this) * o.inverse(); } MyAlg operator-() const { return zero() - *this; } MyAlg& operator +=(const MyAlg& o) { if constexpr (has_subst_add<Opdef>::value) { Opdef::subst_add(v, o.v); return *this; }else if constexpr (has_add<Opdef>::value) { v = Opdef::add(v, o.v); return *this; }else static_assert("either subst_add or add is needed."); } MyAlg operator +(const MyAlg& o) const { if constexpr (has_add<Opdef>::value) { return MyAlg(Opdef::add(v, o.v)); }else if constexpr (has_subst_add<Opdef>::value) { MyAlg ret(v); Opdef::subst_add(ret.v, o.v); return ret; }else static_assert("either subst_add or add is needed."); } MyAlg& operator *=(const MyAlg& o) { if constexpr (has_subst_mult<Opdef>::value) { Opdef::subst_mult(v, o.v); return *this; }else if constexpr (has_mult<Opdef>::value) { v = Opdef::mult(v, o.v); return *this; }else static_assert("either subst_mult or mult is needed."); } MyAlg operator *(const MyAlg& o) const { if constexpr (has_mult<Opdef>::value) { return MyAlg(Opdef::mult(v, o.v)); }else if constexpr (has_subst_mult<Opdef>::value) { MyAlg ret(v); Opdef::subst_mult(ret.v, o.v); return ret; }else static_assert("either subst_mult or mult is needed."); } MyAlg& operator -=(const MyAlg& o) { if constexpr (has_subst_subt<Opdef>::value) { Opdef::subst_subt(v, o.v); return *this; }else if constexpr (has_subt<Opdef>::value) { v = Opdef::subt(v, o.v); return *this; }else static_assert("either subst_subt or subt is needed."); } MyAlg operator -(const MyAlg& o) const { if constexpr (has_subt<Opdef>::value) { return MyAlg(Opdef::subt(v, o.v)); }else if constexpr (has_subst_subt<Opdef>::value) { MyAlg ret(v); Opdef::subst_subt(ret.v, o.v); return ret; }else static_assert("either subst_subt or subt is needed."); } friend istream& operator >>(istream& is, MyAlg& t) { is >> t.v; return is; } friend ostream& operator <<(ostream& os, const MyAlg& t) { os << t.v; return os; } }; // ---- end algOp.cc // ---- inserted function f:gcd from util.cc // auto [g, s, t] = eGCD(a, b) // g == gcd(|a|, |b|) and as + bt == g // |a| and |b| must be less than 2^31. tuple<ll, ll, ll> eGCD(ll a, ll b) { #if DEBUG if (abs(a) >= (1LL << 31) or abs(b) >= (1LL << 31)) throw runtime_error("eGCD: not within the range"); #endif array<ll, 50> vec; // Sufficiently large for a, b < 2^31. ll idx = 0; while (a != 0) { ll x = b / a; ll y = b % a; vec[idx++] = x; b = a; a = y; } ll g, s, t; if (b < 0) { g = -b; s = 0; t = -1; } else { g = b; s = 0; t = 1; } while (idx > 0) { ll x = vec[--idx]; ll old_t = t; t = s; s = old_t - x * s; } return {g, s, t}; } pair<ll, ll> crt_sub(ll a1, ll x1, ll a2, ll x2) { // DLOGKL("crt_sub", a1, x1, a2, x2); a1 = a1 % x1; a2 = a2 % x2; auto [g, s, t] = eGCD(x1, -x2); ll gq = (a2 - a1) / g; ll gr = (a2 - a1) % g; if (gr != 0) return {-1, -1}; s *= gq; t *= gq; ll z = x1 / g * x2; // DLOGK(z); s = s % (x2 / g); ll r = (x1 * s + a1) % z; // DLOGK(r); if (r < 0) r += z; // DLOGK(r); return {r, z}; }; // Chinese Remainder Theorem // // r = crt(a1, x1, a2, x2) // ==> r = a1 (mod x1); r = a2 (mod x2); 0 <= r < lcm(x1, x2) // If no such r exists, returns -1 // Note: x1 and x2 should >= 1. a1 and a2 can be negative or zero. // // r = crt(as, xs) // ==> for all i. r = as[i] (mod xs[i]); 0 <= r < lcm(xs) // If no such r exists, returns -1 // Note: xs[i] should >= 1. as[i] can be negative or zero. // It should hold: len(xs) == len(as) > 0 ll crt(ll a1, ll x1, ll a2, ll x2) { return crt_sub(a1, x1, a2, x2).first; } ll crt(vector<ll> as, vector<ll> xs) { // DLOGKL("crt", as, xs); assert(xs.size() == as.size() && xs.size() > 0); ll r = as[0]; ll z = xs[0]; for (size_t i = 1; i < xs.size(); i++) { // DLOGK(i, r, z, as[i], xs[i]); tie(r, z) = crt_sub(r, z, as[i], xs[i]); // DLOGK(r, z); if (r == -1) return -1; } return r; } // ---- end f:gcd // ---- inserted library file mod.cc template<int mod=0> struct FpG { // G for General static ll dyn_mod; static ll getMod() { if (mod == 0) return dyn_mod; else return mod; } static void setMod(ll _mod) { // effective only when mod == 0 dyn_mod = _mod; } static ll _conv(ll x) { if (x >= getMod()) return x % getMod(); if (x >= 0) return x; if (x >= -getMod()) return x + getMod(); ll y = x % getMod(); if (y == 0) return 0; return y + getMod(); } ll val; FpG(int t = 0) : val(_conv(t)) {} FpG(ll t) : val(_conv(t)) {} FpG(const FpG& t) : val(t.val) {} FpG& operator =(const FpG& t) { val = t.val; return *this; } FpG& operator =(ll t) { val = _conv(t); return *this; } FpG& operator =(int t) { val = _conv(t); return *this; } FpG& operator +=(const FpG& t) { val += t.val; if (val >= getMod()) val -= getMod(); return *this; } FpG& operator -=(const FpG& t) { val -= t.val; if (val < 0) val += getMod(); return *this; } FpG& operator *=(const FpG& t) { val = (val * t.val) % getMod(); return *this; } FpG inv() const { if (val == 0) { throw runtime_error("FpG::inv(): called for zero."); } auto [g, u, v] = eGCD(val, getMod()); if (g != 1) { throw runtime_error("FpG::inv(): not co-prime."); } return FpG(u); } FpG zero() const { return (FpG)0; } FpG one() const { return (FpG)1; } FpG inverse() const { return inv(); } FpG& operator /=(const FpG& t) { return (*this) *= t.inv(); } FpG operator +(const FpG& t) const { return FpG(val) += t; } FpG operator -(const FpG& t) const { return FpG(val) -= t; } FpG operator *(const FpG& t) const { return FpG(val) *= t; } FpG operator /(const FpG& t) const { return FpG(val) /= t; } FpG operator -() const { return FpG(-val); } bool operator ==(const FpG& t) const { return val == t.val; } bool operator !=(const FpG& t) const { return val != t.val; } operator ll() const { return val; } friend FpG operator +(int x, const FpG& y) { return FpG(x) + y; } friend FpG operator -(int x, const FpG& y) { return FpG(x) - y; } friend FpG operator *(int x, const FpG& y) { return FpG(x) * y; } friend FpG operator /(int x, const FpG& y) { return FpG(x) / y; } friend bool operator ==(int x, const FpG& y) { return FpG(x) == y; } friend bool operator !=(int x, const FpG& y) { return FpG(x) != y; } friend FpG operator +(ll x, const FpG& y) { return FpG(x) + y; } friend FpG operator -(ll x, const FpG& y) { return FpG(x) - y; } friend FpG operator *(ll x, const FpG& y) { return FpG(x) * y; } friend FpG operator /(ll x, const FpG& y) { return FpG(x) / y; } friend bool operator ==(ll x, const FpG& y) { return FpG(x) == y; } friend bool operator !=(ll x, const FpG& y) { return FpG(x) != y; } friend FpG operator +(const FpG& x, int y) { return x + FpG(y); } friend FpG operator -(const FpG& x, int y) { return x - FpG(y); } friend FpG operator *(const FpG& x, int y) { return x * FpG(y); } friend FpG operator /(const FpG& x, int y) { return x / FpG(y); } friend bool operator ==(const FpG& x, int y) { return x == FpG(y); } friend bool operator !=(const FpG& x, int y) { return x != FpG(y); } friend FpG operator +(const FpG& x, ll y) { return x + FpG(y); } friend FpG operator -(const FpG& x, ll y) { return x - FpG(y); } friend FpG operator *(const FpG& x, ll y) { return x * FpG(y); } friend FpG operator /(const FpG& x, ll y) { return x / FpG(y); } friend bool operator ==(const FpG& x, ll y) { return x == FpG(y); } friend bool operator !=(const FpG& x, ll y) { return x != FpG(y); } friend istream& operator>> (istream& is, FpG& t) { ll x; is >> x; t = x; return is; } friend ostream& operator<< (ostream& os, const FpG& t) { os << t.val; return os; } }; template<int mod> ll FpG<mod>::dyn_mod; template<typename T> class Comb { int nMax; vector<T> vFact; vector<T> vInvFact; public: Comb(int nm) : nMax(nm), vFact(nm+1), vInvFact(nm+1) { vFact[0] = 1; for (int i = 1; i <= nMax; i++) vFact[i] = i * vFact[i-1]; vInvFact.at(nMax) = (T)1 / vFact[nMax]; for (int i = nMax; i >= 1; i--) vInvFact[i-1] = i * vInvFact[i]; } T fact(int n) { return vFact[n]; } T binom(int n, int r) { if (r < 0 || r > n) return (T)0; return vFact[n] * vInvFact[r] * vInvFact[n-r]; } T binom_dup(int n, int r) { return binom(n + r - 1, r); } // The number of permutation extracting r from n. T perm(int n, int r) { return vFact[n] * vInvFact[n-r]; } }; constexpr int primeA = 1'000'000'007; constexpr int primeB = 998'244'353; // ' using FpA = FpG<primeA>; using FpB = FpG<primeB>; // ---- end mod.cc // @@ !! LIM -- end mark -- using Fp = FpB; int main(int argc, char *argv[]) { ios_base::sync_with_stdio(false); cin.tie(nullptr); cout << setprecision(20); ll N, M, K; cin >> N >> M >> K; // @InpVec(N, S, dec=1) [g4wxY1Py] auto S = vector(N, ll()); for (int i = 0; i < N; i++) { ll v; cin >> v; v -= 1; S[i] = v; } // @End [g4wxY1Py] // @InpVec(M, A) [FXyO4M1M] auto A = vector(M, ll()); for (int i = 0; i < M; i++) { ll v; cin >> v; A[i] = v; } // @End [FXyO4M1M] // @InpVec(M, B) [R7myUDlK] auto B = vector(M, ll()); for (int i = 0; i < M; i++) { ll v; cin >> v; B[i] = v; } // @End [R7myUDlK] ll ans = 0; set<vector<ll>> seen; REP(x, 1, 1LL << N) { vector<ll> vec; REP(i, 0, N) if (x >> i & 1) vec.push_back(S[i]); if (seen.find(vec) != seen.end()) continue; seen.insert(vec); ll sz = SIZE(vec); REP(y, 0, 1LL << sz) { ll s = 0; REP(i, 0, sz) { if (y >> i & 1) s += A[vec[i]]; else s += B[vec[i]]; } if (s == K) ans++; } } cout << ans << endl; return 0; }