結果
| 問題 |
No.20 砂漠のオアシス
|
| コンテスト | |
| ユーザー |
theory_and_me
|
| 提出日時 | 2023-06-14 02:22:01 |
| 言語 | C++17 (gcc 13.3.0 + boost 1.87.0) |
| 結果 |
WA
|
| 実行時間 | - |
| コード長 | 13,531 bytes |
| コンパイル時間 | 2,690 ms |
| コンパイル使用メモリ | 213,592 KB |
| 最終ジャッジ日時 | 2025-02-14 02:31:18 |
|
ジャッジサーバーID (参考情報) |
judge1 / judge4 |
(要ログイン)
| ファイルパターン | 結果 |
|---|---|
| other | AC * 16 WA * 5 |
ソースコード
#line 1 "grid_Dijkstra.test.cpp"
#define PROBLEM "https://yukicoder.me/problems/no/20"
#line 2 "/Users/akagiyasunori/Work/procon/lib/heuristic_lib/data_structures/radix_heap.hpp"
#include <array>
#include <cstddef>
#include <limits>
#include <tuple>
#include <type_traits>
#include <utility>
#include <vector>
// Radix heap for unsigned integer
// https://github.com/iwiwi/radix-heap
// hitonanode さんの radix heap. https://hitonanode.github.io/cplib-cpp/data_structure/radix_heap.hpp
template <class Uint, class Label, typename std::enable_if<std::is_unsigned<Uint>::value>::type * = nullptr>
class radix_heap {
int sz;
Uint last;
std::array<std::vector<std::pair<Uint, Label>>, std::numeric_limits<Uint>::digits + 1> v;
template <class U, typename std::enable_if<sizeof(U) == 4>::type * = nullptr>
static inline int bucket(U x) noexcept {
return x ? 32 - __builtin_clz(x) : 0;
}
template <class U, typename std::enable_if<sizeof(U) == 8>::type * = nullptr>
static inline int bucket(U x) noexcept {
return x ? 64 - __builtin_clzll(x) : 0;
}
void pull() {
if (!v[0].empty()) return;
int i = 1;
while (v[i].empty()) ++i;
last = v[i].back().first;
for (int j = 0; j < int(v[i].size()); j++) last = std::min(last, v[i][j].first);
for (int j = 0; j < int(v[i].size()); j++) {
v[bucket(v[i][j].first ^ last)].emplace_back(std::move(v[i][j]));
}
v[i].clear();
}
public:
radix_heap() : sz(0), last(0) {
static_assert(std::numeric_limits<Uint>::digits > 0, "Invalid type.");
}
std::size_t size() const noexcept { return sz; }
bool empty() const noexcept { return sz == 0; }
void push(Uint x, const Label &val) { ++sz, v[bucket(x ^ last)].emplace_back(x, val); }
void push(Uint x, Label &&val) { ++sz, v[bucket(x ^ last)].emplace_back(x, std::move(val)); }
template <class... Args> void emplace(Uint x, Args &&...args) {
++sz, v[bucket(x ^ last)].emplace_back(std::piecewise_construct, std::forward_as_tuple(x),
std::forward_as_tuple(args...));
}
void pop() { pull(), --sz, v[0].pop_back(); }
std::pair<Uint, Label> top() { return pull(), v[0].back(); }
Uint top_key() { return pull(), last; }
Label &top_label() { return pull(), v[0].back().second; }
void clear() noexcept {
sz = 0, last = 0;
for (auto &vec : v) vec.clear();
}
void swap(radix_heap<Uint, Label> &a) {
std::swap(sz, a.sz), std::swap(last, a.last), v.swap(a.v);
}
};
#line 2 "/Users/akagiyasunori/Work/procon/lib/heuristic_lib/grid/grid_template.hpp"
#include <bits/stdc++.h>
using namespace std;
using ll = long long;
template<typename T> // T は辺のコストの型
struct grid_template{
const T T_INF = numeric_limits<T>::max();
const int num_dirs = 4;
const vector<int> dx = {0, -1, 0, 1};
const vector<int> dy = {-1, 0, 1, 0};
const vector<char> dc = {'L', 'U', 'R', 'D'};
// H: 縦の長さ W: 横の長さ
// access: 移動コストを表現する3次元配列.access[x][y][dir] はマス(x, y)から方向dirに進むときのコストを表す.-1の場合は移動不可能.
int H, W;
vector<vector<vector<T>>> access;
vector<T> access_array;
bool array_flag = false;
grid_template(int H, int W): H(H), W(W){
access.resize(H);
for(int i=0;i<H;i++) access[i].resize(W);
for(int i=0;i<H;i++) for(int j=0;j<W;j++) access[i][j].resize(num_dirs);
for(int i=0;i<H;i++) for(int j=0;j<W;j++) for(int k=0;k<num_dirs;k++) access[i][j][k] = -1;
access_array.resize(H * W * num_dirs);
}
int encode_access(int x, int y, int z){
return x * W * num_dirs + y * num_dirs + z;
}
int encode_grid(int x, int y){
return x * W + y;
}
pair<int, int> decode_grid(int x){
return {x / W, x % W};
}
void make_access_array(){
for(int i=0;i<H;i++){
for(int j=0;j<W;j++){
for(int k=0;k<num_dirs;k++){
access_array[encode_access(i, j, k)] = access[i][j][k];
}
}
}
array_flag = true;
}
// BFS. 辺重みが1のみの場合しか使えない
vector<vector<T>> bfs(int sx, int sy){
if(!array_flag) make_access_array();
vector<T> dist(H * W, -1);
queue<int> qu;
int s = encode_grid(sx, sy);
dist[s] = 0;
qu.emplace(s);
while(!qu.empty()){
auto v_cur = qu.front();qu.pop();
auto [cx, cy] = decode_grid(v_cur);
for(int i=0;i<num_dirs;i++){
int nx = cx + dx[i];
int ny = cy + dy[i];
int v_next = encode_grid(nx, ny);
if(access_array[encode_access(cx, cy, i)] == -1) continue;
if(dist[v_next] != -1) continue;
dist[encode_grid(nx, ny)] = dist[v_cur] + access_array[encode_access(cx, cy, i)];
qu.emplace(v_next);
}
}
vector<vector<T>> dist_grid(H, vector<T>(W));
for(int i=0;i<H;i++){
for(int j=0;j<W;j++){
dist_grid[i][j] = dist[encode_grid(i, j)];
}
}
return dist_grid;
}
// 経路復元付きBFS. 辺重みが1のみの場合しか使えない
tuple<T, string> bfs_reconstruction(int sx, int sy, int tx, int ty){
if(!array_flag) make_access_array();
vector<T> dist(H * W, -1);
vector<T> pre_v(H * W, -1);
queue<int> qu;
int s = encode_grid(sx, sy);
dist[s] = 0;
qu.emplace(s);
while(!qu.empty()){
auto v_cur = qu.front();qu.pop();
auto [cx, cy] = decode_grid(v_cur);
for(int i=0;i<num_dirs;i++){
int nx = cx + dx[i];
int ny = cy + dy[i];
int v_next = encode_grid(nx, ny);
if(access_array[encode_access(cx, cy, i)] == -1) continue;
if(dist[v_next] != -1) continue;
dist[encode_grid(nx, ny)] = dist[v_cur] + access_array[encode_access(cx, cy, i)];
pre_v[v_next] = v_cur;
qu.emplace(v_next);
}
}
string route = "";
if(dist[encode_grid(tx, ty)] == -1){
return {-1, route};
}
int v_cur = encode_grid(tx, ty);
while(v_cur != s){
int v_pre = pre_v[v_cur];
auto [cx, cy] = decode_grid(v_cur);
auto [px, py] = decode_grid(v_pre);
for(int i=0;i<4;i++){
if(dx[i] == cx - px and dy[i] == cy - py){
route.push_back(dc[i]);
}
}
v_cur = v_pre;
}
reverse(route.begin(), route.end());
return {dist[encode_grid(tx, ty)], route};
}
// Dijkstra法による最短経路.負辺は扱えない
vector<vector<T>> Dijkstra(int sx, int sy){
if(!array_flag) make_access_array();
int s = encode_grid(sx, sy);
vector<T> dist(H * W, T_INF);
vector<int> pre_v(H * W, T_INF);
using Pi = pair<T, int>;
priority_queue<Pi, vector<Pi>, greater<Pi>> pq;
// radix_heap<typename std::make_unsigned<T>::type, int> pq; // 符号なし整数にしか使えないが,定数倍が高速
dist[s] = 0;
pq.emplace(0, s);
while(!pq.empty()){
auto [cost, v_cur] = pq.top();pq.pop();
auto [x_cur, y_cur] = decode_grid(v_cur);
if(dist[v_cur] < cost) continue;
for(int i=0;i<num_dirs;i++){
if(access_array[v_cur * num_dirs + i] == -1) continue;
auto cost_next = cost + access_array[v_cur * num_dirs + i];
int x_next = x_cur + dx[i];
int y_next = y_cur + dy[i];
int v_next = encode_grid(x_next, y_next);
if(dist[v_next] <= cost_next) continue;
dist[v_next] = cost_next;
pq.emplace(dist[v_next], v_next);
}
}
vector<vector<T>> dist_grid(H, vector<T>(W));
for(int i=0;i<H;i++){
for(int j=0;j<W;j++){
dist_grid[i][j] = dist[encode_grid(i, j)];
}
}
return dist_grid;
}
// Dijkstra法による経路復元付き最短経路.負辺は扱えない
tuple<T, string> Dijkstra_reconstruction(int sx, int sy, int tx, int ty){
if(!array_flag) make_access_array();
int s = encode_grid(sx, sy);
vector<T> dist(H * W, T_INF);
vector<int> pre_v(H * W, T_INF);
using Pi = pair<T, int>;
priority_queue<Pi, vector<Pi>, greater<Pi>> pq;
// radix_heap<typename std::make_unsigned<T>::type, int> pq; // 符号なし整数にしか使えないが,定数倍が高速
dist[s] = 0;
pq.emplace(0, s);
while(!pq.empty()){
auto [cost, v_cur] = pq.top();pq.pop();
auto [x_cur, y_cur] = decode_grid(v_cur);
if(dist[v_cur] < cost) continue;
for(int i=0;i<num_dirs;i++){
if(access_array[v_cur * num_dirs + i] == -1) continue;
auto cost_next = cost + access_array[v_cur * num_dirs + i];
int x_next = x_cur + dx[i];
int y_next = y_cur + dy[i];
int v_next = encode_grid(x_next, y_next);
if(dist[v_next] <= cost_next) continue;
dist[v_next] = cost_next;
pre_v[v_next] = v_cur;
pq.emplace(dist[v_next], v_next);
}
}
string route = "";
if(dist[encode_grid(tx, ty)] == T_INF){
return {dist[encode_grid(tx, ty)], route};
}
int v_cur = encode_grid(tx, ty);
while(v_cur != s){
int v_pre = pre_v[v_cur];
auto [cx, cy] = decode_grid(v_cur);
auto [px, py] = decode_grid(v_pre);
for(int i=0;i<4;i++){
if(dx[i] == cx - px and dy[i] == cy - py){
route.push_back(dc[i]);
break;
}
}
v_cur = v_pre;
}
reverse(route.begin(), route.end());
return {dist[encode_grid(tx, ty)], route};
}
};
#line 3 "grid_Dijkstra.test.cpp"
#line 5 "grid_Dijkstra.test.cpp"
using namespace std;
using ll = long long;
#define REP(i,n) for(ll i=0;i<(ll)n;i++)
#define dump(x) cerr << "Line " << __LINE__ << ": " << #x << " = " << (x) << "\n";
#define spa << " " <<
#define fi first
#define se second
#define ALL(a) (a).begin(),(a).end()
#define ALLR(a) (a).rbegin(),(a).rend()
using ld = long double;
using ll = long long;
using ull = unsigned long long;
using pii = pair<int, int>;
using pll = pair<ll, ll>;
using pdd = pair<ld, ld>;
template<typename T> using V = vector<T>;
template<typename T> using P = pair<T, T>;
template<typename T> vector<T> make_vec(size_t n, T a) { return vector<T>(n, a); }
template<typename... Ts> auto make_vec(size_t n, Ts... ts) { return vector<decltype(make_vec(ts...))>(n, make_vec(ts...)); }
template<class S, class T> ostream& operator << (ostream& os, const pair<S, T> v){os << "(" << v.first << ", " << v.second << ")"; return os;}
template<typename T> ostream& operator<<(ostream &os, const vector<T> &v) { for (auto &e : v) os << e << ' '; return os; }
template<class T> ostream& operator<<(ostream& os, const vector<vector<T>> &v){ for(auto &e : v){os << e << "\n";} return os;}
struct fast_ios { fast_ios(){ cin.tie(nullptr); ios::sync_with_stdio(false); cout << fixed << setprecision(20); }; } fast_ios_;
template <class T> void UNIQUE(vector<T> &x) {sort(ALL(x));x.erase(unique(ALL(x)), x.end());}
template<class T> bool chmax(T &a, const T &b) { if (a<b) { a=b; return 1; } return 0; }
template<class T> bool chmin(T &a, const T &b) { if (a>b) { a=b; return 1; } return 0; }
void fail() { cout << -1 << '\n'; exit(0); }
inline int popcount(const int x) { return __builtin_popcount(x); }
inline int popcount(const ll x) { return __builtin_popcountll(x); }
template<typename T> void debug(vector<vector<T>>&v,ll h,ll w){for(ll i=0;i<h;i++)
{cerr<<v[i][0];for(ll j=1;j<w;j++)cerr spa v[i][j];cerr<<"\n";}};
template<typename T> void debug(vector<T>&v,ll n){if(n!=0)cerr<<v[0];
for(ll i=1;i<n;i++)cerr spa v[i];
cerr<<"\n";};
int main(){
int N, V, Ox, Oy;
cin >> N >> V >> Ox >> Oy;
vector<vector<int>> L(N, vector<int>(N));
for(int i=0;i<N;i++){
for(int j=0;j<N;j++){
cin >> L[i][j];
}
}
grid_template<int> G(N, N);
for(int i=0;i<N;i++){
for(int j=0;j<N;j++){
for(int k=0;k<(int)G.num_dirs;k++){
int nx = i + G.dx[k];
int ny = j + G.dy[k];
if(nx >= 0 and nx < N and ny >= 0 and ny < N){
G.access[i][j][k] = L[nx][ny];
}
}
}
}
auto dist1 = G.Dijkstra(0, 0);
if(Ox == 0 and Oy == 0){
cout << (dist1[N-1][N-1] < V ? "YES" : "NO") << endl;
}else{
auto dist2 = G.Dijkstra(Ox-1, Oy-1);
if(dist1[N-1][N-1] < V or 2 * (V - dist1[Ox-1][Oy-1]) > dist2[N-1][N-1]){
cout << "YES" << endl;
}else{
cout << "NO" << endl;
}
}
}
theory_and_me