結果

問題 No.1019 最小格子三角形
ユーザー heno239heno239
提出日時 2023-06-15 21:09:21
言語 C++17
(gcc 12.3.0 + boost 1.83.0)
結果
RE  
実行時間 -
コード長 14,590 bytes
コンパイル時間 3,457 ms
コンパイル使用メモリ 177,836 KB
実行使用メモリ 11,980 KB
最終ジャッジ日時 2024-06-23 19:05:12
合計ジャッジ時間 7,834 ms
ジャッジサーバーID
(参考情報)
judge2 / judge5
このコードへのチャレンジ
(要ログイン)

テストケース

テストケース表示
入力 結果 実行時間
実行使用メモリ
testcase_00 RE -
testcase_01 RE -
testcase_02 RE -
testcase_03 RE -
testcase_04 RE -
testcase_05 RE -
testcase_06 RE -
testcase_07 RE -
testcase_08 RE -
testcase_09 RE -
testcase_10 RE -
testcase_11 RE -
testcase_12 RE -
testcase_13 RE -
testcase_14 RE -
testcase_15 RE -
testcase_16 RE -
testcase_17 RE -
testcase_18 RE -
testcase_19 RE -
testcase_20 RE -
testcase_21 RE -
testcase_22 RE -
testcase_23 RE -
testcase_24 RE -
testcase_25 RE -
testcase_26 RE -
権限があれば一括ダウンロードができます

ソースコード

diff #

#pragma GCC optimize("O3")
#pragma GCC optimize("unroll-loops")
#include<iostream>
#include<string>
#include<cstdio>
#include<vector>
#include<cmath>
#include<algorithm>
#include<functional>
#include<iomanip>
#include<queue>
#include<ciso646>
#include<random>
#include<map>
#include<set>
#include<bitset>
#include<stack>
#include<unordered_map>
#include<unordered_set>
#include<utility>
#include<cassert>
#include<complex>
#include<numeric>
#include<array>
#include<chrono>
using namespace std;

//#define int long long
typedef long long ll;

typedef unsigned long long ul;
typedef unsigned int ui;
//ll mod = 1;
constexpr ll mod = 998244353;
//constexpr ll mod = 1000000007;
const int mod17 = 1000000007;
const ll INF = mod * mod;
typedef pair<int, int>P;

#define rep(i,n) for(int i=0;i<n;i++)
#define per(i,n) for(int i=n-1;i>=0;i--)
#define Rep(i,sta,n) for(int i=sta;i<n;i++)
#define rep1(i,n) for(int i=1;i<=n;i++)
#define per1(i,n) for(int i=n;i>=1;i--)
#define Rep1(i,sta,n) for(int i=sta;i<=n;i++)
#define all(v) (v).begin(),(v).end()
typedef pair<ll, ll> LP;

using ld = long double;
typedef pair<ld, ld> LDP;
const ld eps = 1e-10;
const ld pi = acosl(-1.0);

template<typename T>
void chmin(T& a, T b) {
    a = min(a, b);
}
template<typename T>
void chmax(T& a, T b) {
    a = max(a, b);
}
template<typename T>
vector<T> vmerge(vector<T>& a, vector<T>& b) {
    vector<T> res;
    int ida = 0, idb = 0;
    while (ida < a.size() || idb < b.size()) {
        if (idb == b.size()) {
            res.push_back(a[ida]); ida++;
        }
        else if (ida == a.size()) {
            res.push_back(b[idb]); idb++;
        }
        else {
            if (a[ida] < b[idb]) {
                res.push_back(a[ida]); ida++;
            }
            else {
                res.push_back(b[idb]); idb++;
            }
        }
    }
    return res;
}
template<typename T>
void cinarray(vector<T>& v) {
    rep(i, v.size())cin >> v[i];
}
template<typename T>
void coutarray(vector<T>& v) {
    rep(i, v.size()) {
        if (i > 0)cout << " "; cout << v[i];
    }
    cout << "\n";
}
ll mod_pow(ll x, ll n, ll m = mod) {
    if (n < 0) {
        ll res = mod_pow(x, -n, m);
        return mod_pow(res, m - 2, m);
    }
    if (abs(x) >= m)x %= m;
    if (x < 0)x += m;
    //if (x == 0)return 0;
    ll res = 1;
    while (n) {
        if (n & 1)res = res * x % m;
        x = x * x % m; n >>= 1;
    }
    return res;
}
//mod should be <2^31
struct modint {
    int n;
    modint() :n(0) { ; }
    modint(ll m) {
        if (m < 0 || mod <= m) {
            m %= mod; if (m < 0)m += mod;
        }
        n = m;
    }
    operator int() { return n; }
};
bool operator==(modint a, modint b) { return a.n == b.n; }
bool operator<(modint a, modint b) { return a.n < b.n; }
modint operator+=(modint& a, modint b) { a.n += b.n; if (a.n >= mod)a.n -= (int)mod; return a; }
modint operator-=(modint& a, modint b) { a.n -= b.n; if (a.n < 0)a.n += (int)mod; return a; }
modint operator*=(modint& a, modint b) { a.n = ((ll)a.n * b.n) % mod; return a; }
modint operator+(modint a, modint b) { return a += b; }
modint operator-(modint a, modint b) { return a -= b; }
modint operator*(modint a, modint b) { return a *= b; }
modint operator^(modint a, ll n) {
    if (n == 0)return modint(1);
    modint res = (a * a) ^ (n / 2);
    if (n % 2)res = res * a;
    return res;
}

ll inv(ll a, ll p) {
    return (a == 1 ? 1 : (1 - p * inv(p % a, a)) / a + p);
}
modint operator/(modint a, modint b) { return a * modint(inv(b, mod)); }
modint operator/=(modint& a, modint b) { a = a / b; return a; }
const int max_n = 1 << 20;
modint fact[max_n], factinv[max_n];
void init_f() {
    fact[0] = modint(1);
    for (int i = 0; i < max_n - 1; i++) {
        fact[i + 1] = fact[i] * modint(i + 1);
    }
    factinv[max_n - 1] = modint(1) / fact[max_n - 1];
    for (int i = max_n - 2; i >= 0; i--) {
        factinv[i] = factinv[i + 1] * modint(i + 1);
    }
}
modint comb(int a, int b) {
    if (a < 0 || b < 0 || a < b)return 0;
    return fact[a] * factinv[b] * factinv[a - b];
}
modint combP(int a, int b) {
    if (a < 0 || b < 0 || a < b)return 0;
    return fact[a] * factinv[a - b];
}

ll gcd(ll a, ll b) {
    a = abs(a); b = abs(b);
    if (a < b)swap(a, b);
    while (b) {
        ll r = a % b; a = b; b = r;
    }
    return a;
}
template<typename T>
void addv(vector<T>& v, int loc, T val) {
    if (loc >= v.size())v.resize(loc + 1, 0);
    v[loc] += val;
}
/*const int mn = 2000005;
bool isp[mn];
vector<int> ps;
void init() {
    fill(isp + 2, isp + mn, true);
    for (int i = 2; i < mn; i++) {
        if (!isp[i])continue;
        ps.push_back(i);
        for (int j = 2 * i; j < mn; j += i) {
            isp[j] = false;
        }
    }
}*/

//[,val)
template<typename T>
auto prev_itr(set<T>& st, T val) {
    auto res = st.lower_bound(val);
    if (res == st.begin())return st.end();
    res--; return res;
}

//[val,)
template<typename T>
auto next_itr(set<T>& st, T val) {
    auto res = st.lower_bound(val);
    return res;
}
using mP = pair<modint, modint>;
mP operator+(mP a, mP b) {
    return { a.first + b.first,a.second + b.second };
}
mP operator+=(mP& a, mP b) {
    a = a + b; return a;
}
mP operator-(mP a, mP b) {
    return { a.first - b.first,a.second - b.second };
}
mP operator-=(mP& a, mP b) {
    a = a - b; return a;
}
LP operator+(LP a, LP b) {
    return { a.first + b.first,a.second + b.second };
}
LP operator+=(LP& a, LP b) {
    a = a + b; return a;
}
LP operator-(LP a, LP b) {
    return { a.first - b.first,a.second - b.second };
}
LP operator-=(LP& a, LP b) {
    a = a - b; return a;
}

mt19937 mt(time(0));

const string drul = "DRUL";
string senw = "SENW";
//DRUL,or SENW
//int dx[4] = { 1,0,-1,0 };
//int dy[4] = { 0,1,0,-1 };

//-----------------------------------------


//https://github.com/atcoder/ac-library

namespace internal {

    std::vector<int> sa_naive(const std::vector<int>& s) {
        int n = int(s.size());
        std::vector<int> sa(n);
        std::iota(sa.begin(), sa.end(), 0);
        std::sort(sa.begin(), sa.end(), [&](int l, int r) {
            if (l == r) return false;
        while (l < n && r < n) {
            if (s[l] != s[r]) return s[l] < s[r];
            l++;
            r++;
        }
        return l == n;
            });
        return sa;
    }

    std::vector<int> sa_doubling(const std::vector<int>& s) {
        int n = int(s.size());
        std::vector<int> sa(n), rnk = s, tmp(n);
        std::iota(sa.begin(), sa.end(), 0);
        for (int k = 1; k < n; k *= 2) {
            auto cmp = [&](int x, int y) {
                if (rnk[x] != rnk[y]) return rnk[x] < rnk[y];
                int rx = x + k < n ? rnk[x + k] : -1;
                int ry = y + k < n ? rnk[y + k] : -1;
                return rx < ry;
            };
            std::sort(sa.begin(), sa.end(), cmp);
            tmp[sa[0]] = 0;
            for (int i = 1; i < n; i++) {
                tmp[sa[i]] = tmp[sa[i - 1]] + (cmp(sa[i - 1], sa[i]) ? 1 : 0);
            }
            std::swap(tmp, rnk);
        }
        return sa;
    }

    // SA-IS, linear-time suffix array construction
    // Reference:
    // G. Nong, S. Zhang, and W. H. Chan,
    // Two Efficient Algorithms for Linear Time Suffix Array Construction
    template <int THRESHOLD_NAIVE = 10, int THRESHOLD_DOUBLING = 40>
    std::vector<int> sa_is(const std::vector<int>& s, int upper) {
        int n = int(s.size());
        if (n == 0) return {};
        if (n == 1) return { 0 };
        if (n == 2) {
            if (s[0] < s[1]) {
                return { 0, 1 };
            }
            else {
                return { 1, 0 };
            }
        }
        if (n < THRESHOLD_NAIVE) {
            return sa_naive(s);
        }
        if (n < THRESHOLD_DOUBLING) {
            return sa_doubling(s);
        }

        std::vector<int> sa(n);
        std::vector<bool> ls(n);
        for (int i = n - 2; i >= 0; i--) {
            ls[i] = (s[i] == s[i + 1]) ? ls[i + 1] : (s[i] < s[i + 1]);
        }
        std::vector<int> sum_l(upper + 1), sum_s(upper + 1);
        for (int i = 0; i < n; i++) {
            if (!ls[i]) {
                sum_s[s[i]]++;
            }
            else {
                sum_l[s[i] + 1]++;
            }
        }
        for (int i = 0; i <= upper; i++) {
            sum_s[i] += sum_l[i];
            if (i < upper) sum_l[i + 1] += sum_s[i];
        }

        auto induce = [&](const std::vector<int>& lms) {
            std::fill(sa.begin(), sa.end(), -1);
            std::vector<int> buf(upper + 1);
            std::copy(sum_s.begin(), sum_s.end(), buf.begin());
            for (auto d : lms) {
                if (d == n) continue;
                sa[buf[s[d]]++] = d;
            }
            std::copy(sum_l.begin(), sum_l.end(), buf.begin());
            sa[buf[s[n - 1]]++] = n - 1;
            for (int i = 0; i < n; i++) {
                int v = sa[i];
                if (v >= 1 && !ls[v - 1]) {
                    sa[buf[s[v - 1]]++] = v - 1;
                }
            }
            std::copy(sum_l.begin(), sum_l.end(), buf.begin());
            for (int i = n - 1; i >= 0; i--) {
                int v = sa[i];
                if (v >= 1 && ls[v - 1]) {
                    sa[--buf[s[v - 1] + 1]] = v - 1;
                }
            }
        };

        std::vector<int> lms_map(n + 1, -1);
        int m = 0;
        for (int i = 1; i < n; i++) {
            if (!ls[i - 1] && ls[i]) {
                lms_map[i] = m++;
            }
        }
        std::vector<int> lms;
        lms.reserve(m);
        for (int i = 1; i < n; i++) {
            if (!ls[i - 1] && ls[i]) {
                lms.push_back(i);
            }
        }

        induce(lms);

        if (m) {
            std::vector<int> sorted_lms;
            sorted_lms.reserve(m);
            for (int v : sa) {
                if (lms_map[v] != -1) sorted_lms.push_back(v);
            }
            std::vector<int> rec_s(m);
            int rec_upper = 0;
            rec_s[lms_map[sorted_lms[0]]] = 0;
            for (int i = 1; i < m; i++) {
                int l = sorted_lms[i - 1], r = sorted_lms[i];
                int end_l = (lms_map[l] + 1 < m) ? lms[lms_map[l] + 1] : n;
                int end_r = (lms_map[r] + 1 < m) ? lms[lms_map[r] + 1] : n;
                bool same = true;
                if (end_l - l != end_r - r) {
                    same = false;
                }
                else {
                    while (l < end_l) {
                        if (s[l] != s[r]) {
                            break;
                        }
                        l++;
                        r++;
                    }
                    if (l == n || s[l] != s[r]) same = false;
                }
                if (!same) rec_upper++;
                rec_s[lms_map[sorted_lms[i]]] = rec_upper;
            }

            auto rec_sa =
                sa_is<THRESHOLD_NAIVE, THRESHOLD_DOUBLING>(rec_s, rec_upper);

            for (int i = 0; i < m; i++) {
                sorted_lms[i] = lms[rec_sa[i]];
            }
            induce(sorted_lms);
        }
        return sa;
    }

}  // namespace internal

std::vector<int> suffix_array(const std::vector<int>& s, int upper) {
    assert(0 <= upper);
    for (int d : s) {
        assert(0 <= d && d <= upper);
    }
    auto sa = internal::sa_is(s, upper);
    return sa;
}

template <class T> std::vector<int> suffix_array(const std::vector<T>& s) {
    int n = int(s.size());
    std::vector<int> idx(n);
    iota(idx.begin(), idx.end(), 0);
    sort(idx.begin(), idx.end(), [&](int l, int r) { return s[l] < s[r]; });
    std::vector<int> s2(n);
    int now = 0;
    for (int i = 0; i < n; i++) {
        if (i && s[idx[i - 1]] != s[idx[i]]) now++;
        s2[idx[i]] = now;
    }
    return internal::sa_is(s2, now);
}

std::vector<int> suffix_array(const std::string& s) {
    int n = int(s.size());
    std::vector<int> s2(n);
    for (int i = 0; i < n; i++) {
        s2[i] = s[i];
    }
    return internal::sa_is(s2, 255);
}

// Reference:
// T. Kasai, G. Lee, H. Arimura, S. Arikawa, and K. Park,
// Linear-Time Longest-Common-Prefix Computation in Suffix Arrays and Its
// Applications
template <class T>
std::vector<int> lcp_array(const std::vector<T>& s,
    const std::vector<int>& sa) {
    int n = int(s.size());
    assert(n >= 1);
    std::vector<int> rnk(n);
    for (int i = 0; i < n; i++) {
        rnk[sa[i]] = i;
    }
    std::vector<int> lcp(n - 1);
    int h = 0;
    for (int i = 0; i < n; i++) {
        if (h > 0) h--;
        if (rnk[i] == 0) continue;
        int j = sa[rnk[i] - 1];
        for (; j + h < n && i + h < n; h++) {
            if (s[j + h] != s[i + h]) break;
        }
        lcp[rnk[i] - 1] = h;
    }
    return lcp;
}

std::vector<int> lcp_array(const std::string& s, const std::vector<int>& sa) {
    int n = int(s.size());
    std::vector<int> s2(n);
    for (int i = 0; i < n; i++) {
        s2[i] = s[i];
    }
    return lcp_array(s2, sa);
}

void solve() {
    int n, m, q; cin >> n >> m >> q;
    string s; cin >> s;
    vector<ll> k(q);
    rep(i, q) {
        cin >> k[i]; k[i]--;
    }
    vector<ll> ans(q);
    if (m == 1) {
        auto sa = suffix_array(s);
        rep(i, q) {
            ans[i] = sa[i];
        }
    }
    else {
        string ss = s + s;
        auto sa = suffix_array(ss);
        //coutarray(sa);
        auto lcp = lcp_array(ss, sa);
        int loc = 0;
        ll cur = 0;
        rep(i, sa.size()) {
            if (sa[i] >= n) {
                if (loc < q && k[loc] == cur) {
                    ans[loc] = sa[i] + (ll)(m - 2) * n;
                    loc++;
                }
                cur++;
                continue;
            }
            int le = i;
            int len = 2 * n - sa[i];
            while (i + 1 < sa.size() && sa[i + 1] < n && lcp[i] == len) {
                i++;
            }
            len = i - le + 1;
            ll cr = cur + (ll)len * (m - 1);
            while (loc < q && k[loc] < cr) {
                ll d = (k[loc] - cur) / len;
                ll r = (k[loc] - cur) % len;
                ans[loc] = sa[le + r] + (ll)(m-2-d) * n;
                loc++;
            }
            cur = cr;
        }
    }
    rep(i, q)ans[i]++;
    coutarray(ans);
}





signed main() {
    ios::sync_with_stdio(false);
    cin.tie(0);
    //cout << fixed<<setprecision(12);
    //init_f();
    //init();
    //while(true)
    //expr();
    //int t; cin >> t; rep(i, t)
    solve();
    return 0;
}
0