結果
| 問題 |
No.2354 Poor Sight in Winter
|
| コンテスト | |
| ユーザー |
|
| 提出日時 | 2023-06-16 22:02:33 |
| 言語 | C++17 (gcc 13.3.0 + boost 1.87.0) |
| 結果 |
AC
|
| 実行時間 | 134 ms / 2,000 ms |
| コード長 | 8,081 bytes |
| コンパイル時間 | 4,310 ms |
| コンパイル使用メモリ | 259,900 KB |
| 最終ジャッジ日時 | 2025-02-14 05:43:47 |
|
ジャッジサーバーID (参考情報) |
judge2 / judge1 |
(要ログイン)
| ファイルパターン | 結果 |
|---|---|
| sample | AC * 3 |
| other | AC * 26 |
ソースコード
#ifndef HIDDEN_IN_VS // 折りたたみ用
// 警告の抑制
#define _CRT_SECURE_NO_WARNINGS
// ライブラリの読み込み
#include <bits/stdc++.h>
using namespace std;
// 型名の短縮
using ll = long long; // -2^63 ~ 2^63 = 9 * 10^18(int は -2^31 ~ 2^31 = 2 * 10^9)
using pii = pair<int, int>; using pll = pair<ll, ll>; using pil = pair<int, ll>; using pli = pair<ll, int>;
using vi = vector<int>; using vvi = vector<vi>; using vvvi = vector<vvi>;
using vl = vector<ll>; using vvl = vector<vl>; using vvvl = vector<vvl>;
using vb = vector<bool>; using vvb = vector<vb>; using vvvb = vector<vvb>;
using vc = vector<char>; using vvc = vector<vc>; using vvvc = vector<vvc>;
using vd = vector<double>; using vvd = vector<vd>; using vvvd = vector<vvd>;
template <class T> using priority_queue_rev = priority_queue<T, vector<T>, greater<T>>;
using Graph = vvi;
// 定数の定義
const double PI = acos(-1);
const vi DX = { 1, 0, -1, 0 }; // 4 近傍(下,右,上,左)
const vi DY = { 0, 1, 0, -1 };
int INF = 1001001001; ll INFL = 4004004003104004004LL; // (int)INFL = 1010931620;
double EPS = 1e-15;
// 入出力高速化
struct fast_io { fast_io() { cin.tie(nullptr); ios::sync_with_stdio(false); cout << fixed << setprecision(18); } } fastIOtmp;
// 汎用マクロの定義
#define all(a) (a).begin(), (a).end()
#define sz(x) ((int)(x).size())
#define lbpos(a, x) (int)distance((a).begin(), std::lower_bound(all(a), x))
#define ubpos(a, x) (int)distance((a).begin(), std::upper_bound(all(a), x))
#define Yes(b) {cout << ((b) ? "Yes\n" : "No\n");}
#define YES(b) {cout << ((b) ? "YES\n" : "NO\n");}
#define rep(i, n) for(int i = 0, i##_len = int(n); i < i##_len; ++i) // 0 から n-1 まで昇順
#define repi(i, s, t) for(int i = int(s), i##_end = int(t); i <= i##_end; ++i) // s から t まで昇順
#define repir(i, s, t) for(int i = int(s), i##_end = int(t); i >= i##_end; --i) // s から t まで降順
#define repe(v, a) for(const auto& v : (a)) // a の全要素(変更不可能)
#define repea(v, a) for(auto& v : (a)) // a の全要素(変更可能)
#define repb(set, d) for(int set = 0; set < (1 << int(d)); ++set) // d ビット全探索(昇順)
#define repp(a) sort(all(a)); for(bool a##_perm = true; a##_perm; a##_perm = next_permutation(all(a))) // a の順列全て(昇順)
#define smod(n, m) ((((n) % (m)) + (m)) % (m)) // 非負mod
#define uniq(a) {sort(all(a)); (a).erase(unique(all(a)), (a).end());} // 重複除去
#define EXIT(a) {cout << (a) << endl; exit(0);} // 強制終了
// 汎用関数の定義
template <class T> inline ll pow(T n, int k) { ll v = 1; rep(i, k) v *= n; return v; }
template <class T> inline bool chmax(T& M, const T& x) { if (M < x) { M = x; return true; } return false; } // 最大値を更新(更新されたら true を返す)
template <class T> inline bool chmin(T& m, const T& x) { if (m > x) { m = x; return true; } return false; } // 最小値を更新(更新されたら true を返す)
template <class T> inline T get(T set, int i) { return (set >> i) & T(1); }
// 演算子オーバーロード
template <class T, class U> inline istream& operator>>(istream& is, pair<T, U>& p) { is >> p.first >> p.second; return is; }
template <class T> inline istream& operator>>(istream& is, vector<T>& v) { repea(x, v) is >> x; return is; }
template <class T> inline vector<T>& operator--(vector<T>& v) { repea(x, v) --x; return v; }
template <class T> inline vector<T>& operator++(vector<T>& v) { repea(x, v) ++x; return v; }
#endif // 折りたたみ用
#if __has_include(<atcoder/all>)
#include <atcoder/all>
using namespace atcoder;
#ifdef _MSC_VER
#include "localACL.hpp"
#endif
//using mint = modint1000000007;
using mint = modint998244353;
//using mint = modint; // mint::set_mod(m);
namespace atcoder {
inline istream& operator>>(istream& is, mint& x) { ll x_; is >> x_; x = x_; return is; }
inline ostream& operator<<(ostream& os, const mint& x) { os << x.val(); return os; }
}
using vm = vector<mint>; using vvm = vector<vm>; using vvvm = vector<vvm>;
#endif
#ifdef _MSC_VER // 手元環境(Visual Studio)
#include "local.hpp"
#else // 提出用(gcc)
inline int popcount(int n) { return __builtin_popcount(n); }
inline int popcount(ll n) { return __builtin_popcountll(n); }
inline int lsb(int n) { return n != 0 ? __builtin_ctz(n) : -1; }
inline int lsb(ll n) { return n != 0 ? __builtin_ctzll(n) : -1; }
inline int msb(int n) { return n != 0 ? (31 - __builtin_clz(n)) : -1; }
inline int msb(ll n) { return n != 0 ? (63 - __builtin_clzll(n)) : -1; }
#define gcd __gcd
#define dump(...)
#define dumpel(v)
#define dump_list(v)
#define dump_mat(v)
#define input_from_file(f)
#define output_to_file(f)
#define Assert(b) { if (!(b)) while (1) cout << "OLE"; }
#endif
//【めぐる式二分探索】O(log|ok - ng|)
/*
* 条件 okQ() を満たす要素 ok と満たさない要素 ng との境界を二分探索する.
* 境界に隣り合うような条件を満たす要素(ok 側)の位置を返す.
*/
template <class T, class FUNC>
T meguru_search(T ok, T ng, const FUNC& okQ) {
// 参考 : https://twitter.com/meguru_comp/status/697008509376835584
// verify : https://atcoder.jp/contests/typical90/tasks/typical90_a
// 境界が決定するまで
while (abs(ok - ng) > 1) {
// 区間の中間
T mid = (ok + ng) / 2;
// 中間が OK かどうかに応じて区間を縮小する.
if (okQ(mid)) ok = mid;
else ng = mid;
}
return ok;
/* okQ の定義の雛形
auto okQ = [&](ll x) {
return true || false;
};
*/
}
//【重み付きグラフの辺】
/*
* to : 行き先の頂点番号
* cost : 辺の重み
*/
struct WEdge {
// verify : https://judge.yosupo.jp/problem/shortest_path
int to; // 行き先の頂点番号
ll cost; // 辺の重み
WEdge() : to(-1), cost(-INFL) {}
WEdge(int to, ll cost) : to(to), cost(cost) {}
// プレーングラフで呼ばれたとき用
operator int() const { return to; }
#ifdef _MSC_VER
friend ostream& operator<<(ostream& os, const WEdge& e) {
os << '(' << e.to << ',' << e.cost << ')';
return os;
}
#endif
};
//【重み付きグラフ】
/*
* WGraph g
* g[v] : 頂点 v から出る辺を並べたリスト
*
* verify : https://judge.yosupo.jp/problem/shortest_path
*/
using WGraph = vector<vector<WEdge>>;
//【単一始点最短路】O(n + m log n)
/*
* 非負の重み付きグラフ g に対し
* st から各頂点への最短距離(到達不能なら INFL)を格納したリストを返す.
*/
vl dijkstra(const WGraph& g, int st) {
// 参考 : https://snuke.hatenablog.com/entry/2021/02/22/102734
// verify : https://onlinejudge.u-aizu.ac.jp/courses/library/5/GRL/all/GRL_1_A
int n = sz(g);
vl dist(n, INFL); // スタートからの最短距離
dist[st] = 0;
// 組 (スタートからの距離, 頂点番号) を入れる優先度付きキュー
priority_queue_rev<pli> q;
q.push({ 0, st });
while (!q.empty()) {
ll c; int s;
tie(c, s) = q.top(); q.pop();
// すでにより短い距離に更新されていたなら何もしない(忘れると O(n^2))
if (dist[s] < c) continue;
repe(e, g[s]) {
// より短い距離で辿り着けるなら距離を更新し,その先も探索する.
if (dist[s] + e.cost < dist[e.to]) {
dist[e.to] = dist[s] + e.cost;
q.push({ dist[e.to], e.to });
}
}
}
return dist;
}
int main() {
// input_from_file("input.txt");
// output_to_file("output.txt");
int n, k;
cin >> n >> k;
int sx, sy, gx, gy;
cin >> sx >> sy >> gx >> gy;
vi x(n), y(n);
rep(i, n) cin >> x[i] >> y[i];
x.push_back(sx); x.push_back(gx);
y.push_back(sy); y.push_back(gy);
auto okQ = [&](int p) {
WGraph g(n + 2);
rep(s, n + 2) rep(t, n + 2) {
if (s == t) continue;
ll d = abs(x[s] - x[t]) + abs(y[s] - y[t]);
if (p > 0) d = (d + p - 1) / p - 1;
else {
if (d <= p) d = 0;
else d = INFL;
}
g[s].push_back({ t, d });
}
auto dist = dijkstra(g, n);
return dist[n + 1] <= k;
};
cout << meguru_search(100001, -1, okQ) << endl;
}