結果

問題 No.2354 Poor Sight in Winter
ユーザー iiljjiiljj
提出日時 2023-06-16 22:36:04
言語 C++17
(gcc 12.3.0 + boost 1.83.0)
結果
AC  
実行時間 733 ms / 2,000 ms
コード長 12,329 bytes
コンパイル時間 1,719 ms
コンパイル使用メモリ 148,168 KB
実行使用メモリ 6,944 KB
最終ジャッジ日時 2024-06-24 15:16:58
合計ジャッジ時間 6,830 ms
ジャッジサーバーID
(参考情報)
judge3 / judge2
このコードへのチャレンジ
(要ログイン)

テストケース

テストケース表示
入力 結果 実行時間
実行使用メモリ
testcase_00 AC 2 ms
6,812 KB
testcase_01 AC 2 ms
6,944 KB
testcase_02 AC 2 ms
6,944 KB
testcase_03 AC 2 ms
6,944 KB
testcase_04 AC 2 ms
6,940 KB
testcase_05 AC 2 ms
6,940 KB
testcase_06 AC 2 ms
6,940 KB
testcase_07 AC 2 ms
6,940 KB
testcase_08 AC 2 ms
6,940 KB
testcase_09 AC 2 ms
6,944 KB
testcase_10 AC 2 ms
6,940 KB
testcase_11 AC 104 ms
6,944 KB
testcase_12 AC 76 ms
6,940 KB
testcase_13 AC 733 ms
6,944 KB
testcase_14 AC 642 ms
6,940 KB
testcase_15 AC 387 ms
6,944 KB
testcase_16 AC 476 ms
6,940 KB
testcase_17 AC 516 ms
6,940 KB
testcase_18 AC 156 ms
6,940 KB
testcase_19 AC 406 ms
6,940 KB
testcase_20 AC 182 ms
6,944 KB
testcase_21 AC 6 ms
6,944 KB
testcase_22 AC 66 ms
6,940 KB
testcase_23 AC 66 ms
6,944 KB
testcase_24 AC 236 ms
6,940 KB
testcase_25 AC 42 ms
6,940 KB
testcase_26 AC 26 ms
6,940 KB
testcase_27 AC 3 ms
6,940 KB
testcase_28 AC 5 ms
6,944 KB
権限があれば一括ダウンロードができます

ソースコード

diff #

/* #region Head */

// #include <bits/stdc++.h>
#include <algorithm>
#include <array>
#include <bitset>
#include <cassert> // assert.h
#include <cmath>   // math.h
#include <cstring>
#include <ctime>
#include <deque>
#include <fstream>
#include <functional>
#include <iomanip>
#include <iostream>
#include <list>
#include <map>
#include <memory>
#include <numeric>
#include <queue>
#include <random>
#include <set>
#include <sstream>
#include <stack>
#include <string>
#include <unordered_map>
#include <unordered_set>
#include <vector>
using namespace std;

using ll = long long;
using ull = unsigned long long;
using ld = long double;
using pll = pair<ll, ll>;
template <class T> using vc = vector<T>;
template <class T> using vvc = vc<vc<T>>;
using vll = vc<ll>;
using vvll = vvc<ll>;
using vld = vc<ld>;
using vvld = vvc<ld>;
using vs = vc<string>;
using vvs = vvc<string>;
template <class T, class U> using um = unordered_map<T, U>;
template <class T> using pq = priority_queue<T>;
template <class T> using pqa = priority_queue<T, vc<T>, greater<T>>;
template <class T> using us = unordered_set<T>;

#define TREP(T, i, m, n) for (T i = (m), i##_len = (T)(n); i < i##_len; ++(i))
#define TREPM(T, i, m, n) for (T i = (m), i##_max = (T)(n); i <= i##_max; ++(i))
#define TREPR(T, i, m, n) for (T i = (m), i##_min = (T)(n); i >= i##_min; --(i))
#define TREPD(T, i, m, n, d) for (T i = (m), i##_len = (T)(n); i < i##_len; i += (d))
#define TREPMD(T, i, m, n, d) for (T i = (m), i##_max = (T)(n); i <= i##_max; i += (d))

#define REP(i, m, n) for (ll i = (m), i##_len = (ll)(n); i < i##_len; ++(i))
#define REPM(i, m, n) for (ll i = (m), i##_max = (ll)(n); i <= i##_max; ++(i))
#define REPR(i, m, n) for (ll i = (m), i##_min = (ll)(n); i >= i##_min; --(i))
#define REPD(i, m, n, d) for (ll i = (m), i##_len = (ll)(n); i < i##_len; i += (d))
#define REPMD(i, m, n, d) for (ll i = (m), i##_max = (ll)(n); i <= i##_max; i += (d))
#define REPI(itr, ds) for (auto itr = ds.begin(); itr != ds.end(); itr++)
#define REPIR(itr, ds) for (auto itr = ds.rbegin(); itr != ds.rend(); itr++)
#define ALL(x) begin(x), end(x)
#define SIZE(x) ((ll)(x).size())
#define ISIZE(x) ((int)(x).size())
#define PERM(c)                                                                                                        \
    sort(ALL(c));                                                                                                      \
    for (bool c##p = 1; c##p; c##p = next_permutation(ALL(c)))
#define UNIQ(v) v.erase(unique(ALL(v)), v.end());
#define CEIL(a, b) (((a) + (b)-1) / (b))

#define endl '\n'

constexpr ll INF = 1'010'000'000'000'000'017LL;
constexpr int IINF = 1'000'000'007LL;
constexpr ll MOD = 1'000'000'007LL; // 1e9 + 7
// constexpr ll MOD = 998244353;
constexpr ld EPS = 1e-12;
constexpr ld PI = 3.14159265358979323846;

template <typename T> istream &operator>>(istream &is, vc<T> &vec) { // vector 入力
    for (T &x : vec) is >> x;
    return is;
}
template <typename T> ostream &operator<<(ostream &os, const vc<T> &vec) { // vector 出力 (for dump)
    os << "{";
    REP(i, 0, SIZE(vec)) os << vec[i] << (i == i_len - 1 ? "" : ", ");
    os << "}";
    return os;
}
template <typename T> ostream &operator>>(ostream &os, const vc<T> &vec) { // vector 出力 (inline)
    REP(i, 0, SIZE(vec)) os << vec[i] << (i == i_len - 1 ? "\n" : " ");
    return os;
}

template <typename T, size_t _Nm> istream &operator>>(istream &is, array<T, _Nm> &arr) { // array 入力
    REP(i, 0, SIZE(arr)) is >> arr[i];
    return is;
}
template <typename T, size_t _Nm> ostream &operator<<(ostream &os, const array<T, _Nm> &arr) { // array 出力 (for dump)
    os << "{";
    REP(i, 0, SIZE(arr)) os << arr[i] << (i == i_len - 1 ? "" : ", ");
    os << "}";
    return os;
}

template <typename T, typename U> istream &operator>>(istream &is, pair<T, U> &pair_var) { // pair 入力
    is >> pair_var.first >> pair_var.second;
    return is;
}
template <typename T, typename U> ostream &operator<<(ostream &os, const pair<T, U> &pair_var) { // pair 出力
    os << "(" << pair_var.first << ", " << pair_var.second << ")";
    return os;
}

// map, um, set, us 出力
template <class T> ostream &out_iter(ostream &os, const T &map_var) {
    os << "{";
    REPI(itr, map_var) {
        os << *itr;
        auto itrcp = itr;
        if (++itrcp != map_var.end()) os << ", ";
    }
    return os << "}";
}
template <typename T, typename U> ostream &operator<<(ostream &os, const map<T, U> &map_var) {
    return out_iter(os, map_var);
}
template <typename T, typename U> ostream &operator<<(ostream &os, const um<T, U> &map_var) {
    os << "{";
    REPI(itr, map_var) {
        auto [key, value] = *itr;
        os << "(" << key << ", " << value << ")";
        auto itrcp = itr;
        if (++itrcp != map_var.end()) os << ", ";
    }
    os << "}";
    return os;
}
template <typename T> ostream &operator<<(ostream &os, const set<T> &set_var) { return out_iter(os, set_var); }
template <typename T> ostream &operator<<(ostream &os, const us<T> &set_var) { return out_iter(os, set_var); }
template <typename T> ostream &operator<<(ostream &os, const pq<T> &pq_var) {
    pq<T> pq_cp(pq_var);
    os << "{";
    if (!pq_cp.empty()) {
        os << pq_cp.top(), pq_cp.pop();
        while (!pq_cp.empty()) os << ", " << pq_cp.top(), pq_cp.pop();
    }
    return os << "}";
}

// tuple 出力
template <size_t N = 0, bool end_line = false, typename... Args> ostream &operator<<(ostream &os, tuple<Args...> &a) {
    if constexpr (N < std::tuple_size_v<tuple<Args...>>) {
        os << get<N>(a);
        if constexpr (N + 1 < std::tuple_size_v<tuple<Args...>>) {
            os << ' ';
        } else if constexpr (end_line) {
            os << '\n';
        }
        return operator<< <N + 1, end_line>(os, a);
    }
    return os;
}
template <typename... Args> void print_tuple(tuple<Args...> &a) { operator<< <0, true>(cout, a); }

void pprint() { cout << endl; }
template <class Head, class... Tail> void pprint(Head &&head, Tail &&...tail) {
    cout << head;
    if (sizeof...(Tail) > 0) cout << ' ';
    pprint(move(tail)...);
}

// dump
#define DUMPOUT cerr
void dump_func() { DUMPOUT << endl; }
template <class Head, class... Tail> void dump_func(Head &&head, Tail &&...tail) {
    DUMPOUT << head;
    if (sizeof...(Tail) > 0) DUMPOUT << ", ";
    dump_func(move(tail)...);
}

// chmax (更新「される」かもしれない値が前)
template <typename T, typename U, typename Comp = less<>> bool chmax(T &xmax, const U &x, Comp comp = {}) {
    if (comp(xmax, x)) {
        xmax = x;
        return true;
    }
    return false;
}

// chmin (更新「される」かもしれない値が前)
template <typename T, typename U, typename Comp = less<>> bool chmin(T &xmin, const U &x, Comp comp = {}) {
    if (comp(x, xmin)) {
        xmin = x;
        return true;
    }
    return false;
}

// ローカル用
#ifndef ONLINE_JUDGE
#define DEBUG_
#endif

#ifndef MYLOCAL
#undef DEBUG_
#endif

#ifdef DEBUG_
#define DEB
#define dump(...)                                                                                                      \
    DUMPOUT << "  " << string(#__VA_ARGS__) << ": "                                                                    \
            << "[" << to_string(__LINE__) << ":" << __FUNCTION__ << "]" << endl                                        \
            << "    ",                                                                                                 \
        dump_func(__VA_ARGS__)
#else
#define DEB if (false)
#define dump(...)
#endif

#define VAR(type, ...)                                                                                                 \
    type __VA_ARGS__;                                                                                                  \
    assert((cin >> __VA_ARGS__));

template <typename T> istream &operator,(istream &is, T &rhs) { return is >> rhs; }
template <typename T> ostream &operator,(ostream &os, const T &rhs) { return os << ' ' << rhs; }

struct AtCoderInitialize {
    static constexpr int IOS_PREC = 15;
    static constexpr bool AUTOFLUSH = false;
    AtCoderInitialize() {
        ios_base::sync_with_stdio(false), cin.tie(nullptr), cout.tie(nullptr);
        cout << fixed << setprecision(IOS_PREC);
        if (AUTOFLUSH) cout << unitbuf;
    }
} ATCODER_INITIALIZE;

void Yn(bool p) { cout << (p ? "Yes" : "No") << endl; }
void YN(bool p) { cout << (p ? "YES" : "NO") << endl; }

template <typename T> constexpr void operator--(vc<T> &v, int) noexcept {
    for (int i = 0; i < ISIZE(v); ++i) v[i]--;
}
template <typename T> constexpr void operator++(vc<T> &v, int) noexcept {
    for (int i = 0; i < ISIZE(v); ++i) v[i]++;
}

/* #endregion */

// #include <atcoder/all>
// using namespace atcoder;

/* #region dijkstra_f */

/**
 * @param N ノード数
 * @param delta 隣接行列を生成する関数.delta(Node v, fn(Node t)).
 *              fn は現在の頂点 current と隣接する頂点を探索する関数.
 * @param index 頂点→頂点インデックス,のマップ関数.(index(Node v) -> int)
 * @return 距離テーブル
 */
template <class Node, class Delta, class Index, class Weight = ll, Weight inf = INF>
vc<Weight> dijkstra_f(int N, const vc<Node> &starts, Delta delta, Index index, Weight init = 0) {
    struct state {
        Weight cost;
        Node dst;
        state(Weight cost, Node dst) : cost(cost), dst(dst) {}
        bool operator<(const state &o) const { return cost > o.cost; }
        // bool operator>(const state &o) const { return cost > o.cost; }
    };

    vc<Weight> dist(N, inf);   // 距離テーブル
    priority_queue<state> que; // 「訪問予定」頂点リスト
    for (const Node &start : starts) {
        int idx = index(start);
        assert(0 <= idx && idx < N);
        dist[idx] = init; // 初期条件 (頂点 start を初期頂点とする)
        que.emplace(init, start);
    }

    while (!que.empty()) {
        state cur = que.top(); // tie(d, v) = que.top();
        que.pop();
        Node current = cur.dst;
        Weight cur_dist = cur.cost;

        // 隣接ノードに関するループは外に出す
        delta(current, [&](Node dst, Weight weight) -> void {
            Weight nxt_dist = cur_dist + weight;

            int idx = index(dst);
            assert(0 <= idx && idx < N);
            if (chmin(dist[idx], nxt_dist)) {
                que.emplace(nxt_dist, dst);
            }
        });
    }
    return dist;
}

/* #endregion */

template <class tProposition, typename T = ll> T binarySearchIntMin(T left, T right, tProposition p) {
    if (right < left) return -1;
    T mid;
    while (left + 1 < right) {
        mid = (left + right) / 2;
        if (p(mid))
            right = mid;
        else // fn > 0
            left = mid + 1;
    }

    if (p(left))
        return left;
    else if (p(right))
        return right;
    else
        return -1;
}

// Problem
void solve() {
    VAR(ll, n, k);
    VAR(ll, sx, sy, gx, gy);
    vll x(n), y(n);
    REP(i, 0, n) cin >> x[i], y[i];

    x.push_back(sx);
    y.push_back(sy);
    x.push_back(gx);
    y.push_back(gy);

    using Node = int;
    //
    const int N = n + 2;
    const int S = n;
    const int T = n + 1;

    // インデックス生成関数
    auto index = [&](const Node &v) -> int { return v; };
    auto dist = [&](const Node &u, const Node &v) -> ll {
        const ll dx = x[v] - x[u];
        const ll dy = y[v] - y[u];
        return abs(dx) + abs(dy);
    };

    // ある視界の最小値が達成可能か?で二分探索
    ll ans = binarySearchIntMin(1LL, 200000LL, [&](ll mid) -> bool {
        // 隣接行列生成関数
        auto delta = [&](const Node &current, function<void(Node, int)> transit) -> void {
            // 隣接ノードに関するループ
            TREP(Node, nxt, 0, N) {
                if (nxt == current) continue;
                const ll d = dist(current, nxt);
                const ll cost = CEIL(d, mid) - 1;
                transit(nxt, cost);
            }
        };
        vll dist = dijkstra_f(N, vc<Node>{S}, delta, index, 0LL);
        return dist[T] <= k;
    });
    pprint(ans);
}

// entry point
int main() {
    solve();
    return 0;
}
0