結果
| 問題 | No.336 門松列列 |
| コンテスト | |
| ユーザー |
Min_25
|
| 提出日時 | 2016-04-23 07:47:23 |
| 言語 | PyPy2 (7.3.15) |
| 結果 |
AC
|
| 実行時間 | 118 ms / 2,000 ms |
| コード長 | 2,509 bytes |
| 記録 | |
| コンパイル時間 | 220 ms |
| コンパイル使用メモリ | 77,780 KB |
| 最終ジャッジ日時 | 2025-12-03 20:30:01 |
|
ジャッジサーバーID (参考情報) |
judge1 / judge2 |
(要ログイン)
| ファイルパターン | 結果 |
|---|---|
| sample | AC * 4 |
| other | AC * 8 |
ソースコード
def ilog2(n):
return 0 if n <= 0 else n.bit_length() - 1
def pack(pack, shamt):
size = len(pack)
while size > 1:
npack = []
for i in range(0, size - 1, 2):
npack += [pack[i] | (pack[i+1] << shamt)]
if size & 1:
npack += [pack[-1]]
pack, size, shamt = npack, (size + 1) >> 1, shamt << 1
return pack[0]
def unpack(M, size, shamt):
s, sizes = size, []
while s > 1:
sizes += [s]
s = (s + 1) >> 1
ret = [M]
for size in sizes[::-1]:
mask, nret = (1 << shamt) - 1, []
for c in ret:
nret += [c & mask, c >> shamt]
ret, shamt = nret[:size], shamt >> 1
return ret
def poly_mul_mod(f, g, mod):
size = min(len(f), len(g))
shift = ((mod - 1) ** 2 * size).bit_length()
rsize = len(f) + len(g) - 1
h = unpack(pack(f, shift) * pack(g, shift), rsize, shift * (1 << ilog2(rsize - 1)))
return [int(x % mod) for x in h]
def poly_inverse_mod(f, size, mod):
assert(f[0] == 1)
deg, degs = size - 1, []
while deg > 0:
degs += [deg]
deg >>= 1
f2 = f[:]
if len(f2) < size:
f2.extend([0] * (size - len(f2)))
inv = [1]
for t in degs[::-1]:
s = t + 1 - len(inv)
tmp = poly_mul_mod(f2[:t + 1], inv, mod)[len(inv):]
tmp = poly_mul_mod(tmp[:s], inv[:s], mod)
inv.extend([-v % mod for v in tmp[:s]])
return inv
def mod_invs(N, mod):
ret = [1] * (N + 1)
for i in range(2, N + 1):
ret[i] = ret[mod % i] * (mod - mod // i) % mod
return ret
def facts_mod(size, p):
facts = [1] * (size + 1)
ifacts = [1] * (size + 1)
for i in range(1, size + 1):
facts[i] = facts[i-1] * i % p
ifacts[size] = pow(facts[size], p - 2, p)
for i in range(size, 1, -1):
ifacts[i-1] = ifacts[i] * i % p
return facts, ifacts
def prob336():
N = 2016
MOD = 10 ** 9 + 7
invs = mod_invs(N + 1, MOD)
facts, ifacts = facts_mod(N + 1, MOD)
inv2 = invs[2]
E = [0 if i & 1 else ifacts[i] for i in range(N + 1)]
E = poly_inverse_mod(E, N + 1, MOD)
E = [c * facts[i] % MOD for i, c in enumerate(E)]
B = poly_inverse_mod(ifacts[1:], N + 1, MOD)
B = [c * facts[i] % MOD for i, c in enumerate(B)]
T = [pow(2, i, MOD) for i in range(N + 1)]
A = [0] * (N + 1)
for i in range(0, N + 1, 2):
A[i] = (-1) ** (i // 2) * E[i] * 2 % MOD
for i in range(1, N + 1, 2):
t = (-1) ** ((i - 1) // 2)
A[i] = 2 * t * T[i + 1] * (T[i + 1] - 1) % MOD * B[i + 1] % MOD * invs[i + 1] % MOD
from sys import stdin
for line in stdin:
n = int(line)
print(0 if n <= 2 else A[n])
prob336()
Min_25