結果
問題 | No.336 門松列列 |
ユーザー | Min_25 |
提出日時 | 2016-04-23 07:47:23 |
言語 | Python2 (2.7.18) |
結果 |
AC
|
実行時間 | 47 ms / 2,000 ms |
コード長 | 2,509 bytes |
コンパイル時間 | 248 ms |
コンパイル使用メモリ | 7,168 KB |
実行使用メモリ | 7,168 KB |
最終ジャッジ日時 | 2024-06-12 01:12:24 |
合計ジャッジ時間 | 1,362 ms |
ジャッジサーバーID (参考情報) |
judge4 / judge2 |
(要ログイン)
テストケース
テストケース表示入力 | 結果 | 実行時間 実行使用メモリ |
---|---|---|
testcase_00 | AC | 46 ms
7,040 KB |
testcase_01 | AC | 43 ms
7,040 KB |
testcase_02 | AC | 46 ms
7,040 KB |
testcase_03 | AC | 46 ms
7,168 KB |
testcase_04 | AC | 45 ms
7,168 KB |
testcase_05 | AC | 43 ms
7,040 KB |
testcase_06 | AC | 47 ms
7,040 KB |
testcase_07 | AC | 44 ms
6,912 KB |
testcase_08 | AC | 45 ms
6,912 KB |
testcase_09 | AC | 45 ms
6,912 KB |
testcase_10 | AC | 45 ms
7,040 KB |
testcase_11 | AC | 44 ms
7,168 KB |
ソースコード
def ilog2(n): return 0 if n <= 0 else n.bit_length() - 1 def pack(pack, shamt): size = len(pack) while size > 1: npack = [] for i in range(0, size - 1, 2): npack += [pack[i] | (pack[i+1] << shamt)] if size & 1: npack += [pack[-1]] pack, size, shamt = npack, (size + 1) >> 1, shamt << 1 return pack[0] def unpack(M, size, shamt): s, sizes = size, [] while s > 1: sizes += [s] s = (s + 1) >> 1 ret = [M] for size in sizes[::-1]: mask, nret = (1 << shamt) - 1, [] for c in ret: nret += [c & mask, c >> shamt] ret, shamt = nret[:size], shamt >> 1 return ret def poly_mul_mod(f, g, mod): size = min(len(f), len(g)) shift = ((mod - 1) ** 2 * size).bit_length() rsize = len(f) + len(g) - 1 h = unpack(pack(f, shift) * pack(g, shift), rsize, shift * (1 << ilog2(rsize - 1))) return [int(x % mod) for x in h] def poly_inverse_mod(f, size, mod): assert(f[0] == 1) deg, degs = size - 1, [] while deg > 0: degs += [deg] deg >>= 1 f2 = f[:] if len(f2) < size: f2.extend([0] * (size - len(f2))) inv = [1] for t in degs[::-1]: s = t + 1 - len(inv) tmp = poly_mul_mod(f2[:t + 1], inv, mod)[len(inv):] tmp = poly_mul_mod(tmp[:s], inv[:s], mod) inv.extend([-v % mod for v in tmp[:s]]) return inv def mod_invs(N, mod): ret = [1] * (N + 1) for i in range(2, N + 1): ret[i] = ret[mod % i] * (mod - mod // i) % mod return ret def facts_mod(size, p): facts = [1] * (size + 1) ifacts = [1] * (size + 1) for i in range(1, size + 1): facts[i] = facts[i-1] * i % p ifacts[size] = pow(facts[size], p - 2, p) for i in range(size, 1, -1): ifacts[i-1] = ifacts[i] * i % p return facts, ifacts def prob336(): N = 2016 MOD = 10 ** 9 + 7 invs = mod_invs(N + 1, MOD) facts, ifacts = facts_mod(N + 1, MOD) inv2 = invs[2] E = [0 if i & 1 else ifacts[i] for i in range(N + 1)] E = poly_inverse_mod(E, N + 1, MOD) E = [c * facts[i] % MOD for i, c in enumerate(E)] B = poly_inverse_mod(ifacts[1:], N + 1, MOD) B = [c * facts[i] % MOD for i, c in enumerate(B)] T = [pow(2, i, MOD) for i in range(N + 1)] A = [0] * (N + 1) for i in range(0, N + 1, 2): A[i] = (-1) ** (i // 2) * E[i] * 2 % MOD for i in range(1, N + 1, 2): t = (-1) ** ((i - 1) // 2) A[i] = 2 * t * T[i + 1] * (T[i + 1] - 1) % MOD * B[i + 1] % MOD * invs[i + 1] % MOD from sys import stdin for line in stdin: n = int(line) print(0 if n <= 2 else A[n]) prob336()