結果
問題 | No.2354 Poor Sight in Winter |
ユーザー | nu50218 |
提出日時 | 2023-06-16 22:46:37 |
言語 | C++17 (gcc 12.3.0 + boost 1.83.0) |
結果 |
WA
|
実行時間 | - |
コード長 | 6,938 bytes |
コンパイル時間 | 4,550 ms |
コンパイル使用メモリ | 270,444 KB |
実行使用メモリ | 6,944 KB |
最終ジャッジ日時 | 2024-06-24 15:40:38 |
合計ジャッジ時間 | 5,644 ms |
ジャッジサーバーID (参考情報) |
judge5 / judge4 |
(要ログイン)
テストケース
テストケース表示入力 | 結果 | 実行時間 実行使用メモリ |
---|---|---|
testcase_00 | AC | 2 ms
6,812 KB |
testcase_01 | AC | 2 ms
6,940 KB |
testcase_02 | AC | 2 ms
6,940 KB |
testcase_03 | AC | 2 ms
6,940 KB |
testcase_04 | AC | 2 ms
6,944 KB |
testcase_05 | AC | 2 ms
6,940 KB |
testcase_06 | AC | 2 ms
6,940 KB |
testcase_07 | AC | 2 ms
6,940 KB |
testcase_08 | AC | 2 ms
6,944 KB |
testcase_09 | AC | 2 ms
6,940 KB |
testcase_10 | AC | 2 ms
6,944 KB |
testcase_11 | AC | 10 ms
6,944 KB |
testcase_12 | AC | 12 ms
6,940 KB |
testcase_13 | AC | 18 ms
6,944 KB |
testcase_14 | AC | 19 ms
6,944 KB |
testcase_15 | AC | 18 ms
6,940 KB |
testcase_16 | AC | 19 ms
6,944 KB |
testcase_17 | AC | 19 ms
6,940 KB |
testcase_18 | WA | - |
testcase_19 | AC | 16 ms
6,944 KB |
testcase_20 | AC | 12 ms
6,940 KB |
testcase_21 | WA | - |
testcase_22 | WA | - |
testcase_23 | AC | 8 ms
6,940 KB |
testcase_24 | AC | 14 ms
6,940 KB |
testcase_25 | AC | 7 ms
6,940 KB |
testcase_26 | AC | 7 ms
6,944 KB |
testcase_27 | AC | 3 ms
6,940 KB |
testcase_28 | AC | 4 ms
6,940 KB |
ソースコード
#line 1 "main.cpp" #ifdef LOCAL #include <local.hpp> #else #pragma GCC optimize("O3,unroll-loops") #pragma GCC target("avx2,popcnt,lzcnt,abm,bmi,bmi2") #include <bits/stdc++.h> #define debug(...) ((void)0) #define postprocess(...) ((void)0) #endif // https://hitonanode.github.io/cplib-cpp/graph/manhattan_mst.hpp // CUT begin // Manhattan MST: 二次元平面上の頂点たちのマンハッタン距離による minimum spanning tree の O(N) 本の候補辺を列挙 // Complexity: O(N log N) // output: [(weight_uv, u, v), ...] // Verified: https://judge.yosupo.jp/problem/manhattanmst, https://www.codechef.com/problems/HKRMAN // Reference: // [1] H. Zhou, N. Shenoy, W. Nicholls, // "Efficient minimum spanning tree construction without Delaunay triangulation," // Information Processing Letters, 81(5), 271-276, 2002. template <typename T> std::vector<std::tuple<T, int, int>> manhattan_mst(std::vector<T> xs, std::vector<T> ys) { const int n = xs.size(); std::vector<int> idx(n); std::iota(idx.begin(), idx.end(), 0); std::vector<std::tuple<T, int, int>> ret; for (int s = 0; s < 2; s++) { for (int t = 0; t < 2; t++) { auto cmp = [&](int i, int j) { return xs[i] + ys[i] < xs[j] + ys[j]; }; std::sort(idx.begin(), idx.end(), cmp); std::map<T, int> sweep; for (int i : idx) { for (auto it = sweep.lower_bound(-ys[i]); it != sweep.end(); it = sweep.erase(it)) { int j = it->second; if (xs[i] - xs[j] < ys[i] - ys[j]) break; ret.emplace_back(std::abs(xs[i] - xs[j]) + std::abs(ys[i] - ys[j]), i, j); } sweep[-ys[i]] = i; } std::swap(xs, ys); } for (auto& x : xs) x = -x; } std::sort(ret.begin(), ret.end()); return ret; } #line 1 "library/graph/shortest_path.hpp" #include <algorithm> #include <cassert> #include <limits> #include <queue> #include <vector> template <typename weight> struct shortest_path { const weight unreachable = std::numeric_limits<weight>::max(); shortest_path() : _computed(false) {} shortest_path(const int& n, const int& m = 0) : _n(n), _computed(false) { if (m) _edges.reserve(m); } void set_number(const int& n, const int& m = 0) { _n = n; if (m) _edges.reserve(m); } void add_edge(const int& i, const int& j, const weight& w) { assert(0 <= i && i < _n); assert(0 <= j && j < _n); _edges.emplace_back(i, j, w); } void compute(const int& s) { _s = s; _computed = true; _adj.resize(_n); for (auto&& e : _edges) { auto [u, v, w] = e; _adj[u].emplace_back(v, w); } _dist.resize(_n); std::fill(_dist.begin(), _dist.end(), unreachable); _par.resize(_n); std::fill(_par.begin(), _par.end(), -1); // select best algorithm if (!std::is_integral<weight>::value) { _dijkstra(s); return; } for (auto&& [_, __, cost] : _edges) { if (cost >= 2) { _dijkstra(s); return; } } for (auto&& [_, __, cost] : _edges) { if (cost == 0) { _bfs01(s); return; } } _bfs(s); } int s() { assert(_computed); return _s; } std::vector<weight> dist() { assert(_computed); return _dist; } weight dist(const int& t) { assert(_computed); return _dist[t]; } std::vector<int> path(int t) { assert(_computed); assert(0 <= t && t < _n); assert(_dist[t] != unreachable); std::vector<int> ret; while (t != _s) { ret.push_back(t); t = _par[t]; } ret.push_back(_s); std::reverse(ret.begin(), ret.end()); return ret; } private: // input values int _n; int _s; std::vector<std::tuple<int, int, weight>> _edges; // computed values bool _computed; std::vector<std::vector<std::pair<int, weight>>> _adj; std::vector<weight> _dist; std::vector<int> _par; void _bfs(const int& s) { std::queue<int> que; que.emplace(s); _dist[s] = 0; while (!que.empty()) { auto v = que.front(); que.pop(); for (auto&& [to, _] : _adj[v]) { if (_dist[to] == unreachable) { _dist[to] = _dist[v] + 1; _par[to] = v; que.emplace(to); } } } } void _bfs01(const int& s) { std::deque<int> que; _dist[s] = 0; que.emplace_back(s); while (!que.empty()) { auto v = que.front(); que.pop_front(); for (auto&& [to, cost] : _adj[v]) { weight d = _dist[v] + cost; if (d < _dist[to]) { _dist[to] = d; _par[to] = v; if (cost) { que.emplace_back(to); } else { que.emplace_front(to); } } } } } void _dijkstra(const int& s) { using que_class = std::pair<weight, int>; std::priority_queue<que_class, std::vector<que_class>, std::greater<que_class>> que; _dist[s] = 0; que.emplace(0, s); while (!que.empty()) { auto [d, v] = que.top(); que.pop(); if (_dist[v] != d) continue; for (auto&& [to, cost] : _adj[v]) { if (_dist[to] <= d + cost) continue; _dist[to] = d + cost; _par[to] = v; que.emplace(_dist[to], to); } } } }; #line 49 "main.cpp" using namespace std; using ll = long long; using ld = long double; void solve([[maybe_unused]] int test) { ll N, K; cin >> N >> K; const int s = 0; const int g = 1; vector<ll> x(N + 2), y(N + 2); for (int i = 0; i < N + 2; i++) { cin >> x[i] >> y[i]; } ll imin = 0; ll imax = 3e5; while (imax - imin > 1) { ll imid = (imin + imax) / 2; shortest_path<ll> sp(N + 2); for (auto&& [w, i, j] : manhattan_mst(x, y)) { sp.add_edge(i, j, (w - 1) / imid); sp.add_edge(j, i, (w - 1) / imid); } sp.compute(s); (sp.dist(g) != sp.unreachable && sp.dist(g) <= K ? imax : imin) = imid; } cout << imax << endl; } int main() { ios::sync_with_stdio(false); cin.tie(nullptr); int t = 1; // cin >> t; for (int i = 1; i <= t; i++) { solve(i); } postprocess(); }