結果
問題 | No.2354 Poor Sight in Winter |
ユーザー |
|
提出日時 | 2023-06-16 22:46:37 |
言語 | C++17(gcc12) (gcc 12.3.0 + boost 1.87.0) |
結果 |
WA
|
実行時間 | - |
コード長 | 6,938 bytes |
コンパイル時間 | 22,018 ms |
コンパイル使用メモリ | 329,376 KB |
最終ジャッジ日時 | 2025-02-14 21:06:29 |
ジャッジサーバーID (参考情報) |
judge5 / judge4 |
(要ログイン)
ファイルパターン | 結果 |
---|---|
sample | AC * 3 |
other | AC * 23 WA * 3 |
ソースコード
#line 1 "main.cpp"#ifdef LOCAL#include <local.hpp>#else#pragma GCC optimize("O3,unroll-loops")#pragma GCC target("avx2,popcnt,lzcnt,abm,bmi,bmi2")#include <bits/stdc++.h>#define debug(...) ((void)0)#define postprocess(...) ((void)0)#endif// https://hitonanode.github.io/cplib-cpp/graph/manhattan_mst.hpp// CUT begin// Manhattan MST: 二次元平面上の頂点たちのマンハッタン距離による minimum spanning tree の O(N) 本の候補辺を列挙// Complexity: O(N log N)// output: [(weight_uv, u, v), ...]// Verified: https://judge.yosupo.jp/problem/manhattanmst, https://www.codechef.com/problems/HKRMAN// Reference:// [1] H. Zhou, N. Shenoy, W. Nicholls,// "Efficient minimum spanning tree construction without Delaunay triangulation,"// Information Processing Letters, 81(5), 271-276, 2002.template <typename T>std::vector<std::tuple<T, int, int>> manhattan_mst(std::vector<T> xs, std::vector<T> ys) {const int n = xs.size();std::vector<int> idx(n);std::iota(idx.begin(), idx.end(), 0);std::vector<std::tuple<T, int, int>> ret;for (int s = 0; s < 2; s++) {for (int t = 0; t < 2; t++) {auto cmp = [&](int i, int j) { return xs[i] + ys[i] < xs[j] + ys[j]; };std::sort(idx.begin(), idx.end(), cmp);std::map<T, int> sweep;for (int i : idx) {for (auto it = sweep.lower_bound(-ys[i]); it != sweep.end(); it = sweep.erase(it)) {int j = it->second;if (xs[i] - xs[j] < ys[i] - ys[j]) break;ret.emplace_back(std::abs(xs[i] - xs[j]) + std::abs(ys[i] - ys[j]), i, j);}sweep[-ys[i]] = i;}std::swap(xs, ys);}for (auto& x : xs) x = -x;}std::sort(ret.begin(), ret.end());return ret;}#line 1 "library/graph/shortest_path.hpp"#include <algorithm>#include <cassert>#include <limits>#include <queue>#include <vector>template <typename weight>struct shortest_path {const weight unreachable = std::numeric_limits<weight>::max();shortest_path() : _computed(false) {}shortest_path(const int& n, const int& m = 0) : _n(n), _computed(false) {if (m) _edges.reserve(m);}void set_number(const int& n, const int& m = 0) {_n = n;if (m) _edges.reserve(m);}void add_edge(const int& i, const int& j, const weight& w) {assert(0 <= i && i < _n);assert(0 <= j && j < _n);_edges.emplace_back(i, j, w);}void compute(const int& s) {_s = s;_computed = true;_adj.resize(_n);for (auto&& e : _edges) {auto [u, v, w] = e;_adj[u].emplace_back(v, w);}_dist.resize(_n);std::fill(_dist.begin(), _dist.end(), unreachable);_par.resize(_n);std::fill(_par.begin(), _par.end(), -1);// select best algorithmif (!std::is_integral<weight>::value) {_dijkstra(s);return;}for (auto&& [_, __, cost] : _edges) {if (cost >= 2) {_dijkstra(s);return;}}for (auto&& [_, __, cost] : _edges) {if (cost == 0) {_bfs01(s);return;}}_bfs(s);}int s() {assert(_computed);return _s;}std::vector<weight> dist() {assert(_computed);return _dist;}weight dist(const int& t) {assert(_computed);return _dist[t];}std::vector<int> path(int t) {assert(_computed);assert(0 <= t && t < _n);assert(_dist[t] != unreachable);std::vector<int> ret;while (t != _s) {ret.push_back(t);t = _par[t];}ret.push_back(_s);std::reverse(ret.begin(), ret.end());return ret;}private:// input valuesint _n;int _s;std::vector<std::tuple<int, int, weight>> _edges;// computed valuesbool _computed;std::vector<std::vector<std::pair<int, weight>>> _adj;std::vector<weight> _dist;std::vector<int> _par;void _bfs(const int& s) {std::queue<int> que;que.emplace(s);_dist[s] = 0;while (!que.empty()) {auto v = que.front();que.pop();for (auto&& [to, _] : _adj[v]) {if (_dist[to] == unreachable) {_dist[to] = _dist[v] + 1;_par[to] = v;que.emplace(to);}}}}void _bfs01(const int& s) {std::deque<int> que;_dist[s] = 0;que.emplace_back(s);while (!que.empty()) {auto v = que.front();que.pop_front();for (auto&& [to, cost] : _adj[v]) {weight d = _dist[v] + cost;if (d < _dist[to]) {_dist[to] = d;_par[to] = v;if (cost) {que.emplace_back(to);} else {que.emplace_front(to);}}}}}void _dijkstra(const int& s) {using que_class = std::pair<weight, int>;std::priority_queue<que_class, std::vector<que_class>, std::greater<que_class>> que;_dist[s] = 0;que.emplace(0, s);while (!que.empty()) {auto [d, v] = que.top();que.pop();if (_dist[v] != d) continue;for (auto&& [to, cost] : _adj[v]) {if (_dist[to] <= d + cost) continue;_dist[to] = d + cost;_par[to] = v;que.emplace(_dist[to], to);}}}};#line 49 "main.cpp"using namespace std;using ll = long long;using ld = long double;void solve([[maybe_unused]] int test) {ll N, K;cin >> N >> K;const int s = 0;const int g = 1;vector<ll> x(N + 2), y(N + 2);for (int i = 0; i < N + 2; i++) {cin >> x[i] >> y[i];}ll imin = 0;ll imax = 3e5;while (imax - imin > 1) {ll imid = (imin + imax) / 2;shortest_path<ll> sp(N + 2);for (auto&& [w, i, j] : manhattan_mst(x, y)) {sp.add_edge(i, j, (w - 1) / imid);sp.add_edge(j, i, (w - 1) / imid);}sp.compute(s);(sp.dist(g) != sp.unreachable && sp.dist(g) <= K ? imax : imin) = imid;}cout << imax << endl;}int main() {ios::sync_with_stdio(false);cin.tie(nullptr);int t = 1;// cin >> t;for (int i = 1; i <= t; i++) {solve(i);}postprocess();}