結果

問題 No.2354 Poor Sight in Winter
ユーザー 👑 p-adic
提出日時 2023-06-18 17:24:41
言語 C++17(gcc12)
(gcc 12.3.0 + boost 1.87.0)
結果
AC  
実行時間 164 ms / 2,000 ms
コード長 46,115 bytes
コンパイル時間 14,015 ms
コンパイル使用メモリ 308,548 KB
最終ジャッジ日時 2025-02-14 22:37:10
ジャッジサーバーID
(参考情報)
judge3 / judge2
このコードへのチャレンジ
(要ログイン)
ファイルパターン 結果
sample AC * 3
other AC * 26
権限があれば一括ダウンロードができます

ソースコード

diff #
プレゼンテーションモードにする

#ifdef DEBUG
#define _GLIBCXX_DEBUG
#define UNTIE ios_base::sync_with_stdio( false ); cin.tie( nullptr ); signal( SIGABRT , &AlertAbort )
#define DEXPR( LL , BOUND , VALUE , DEBUG_VALUE ) CEXPR( LL , BOUND , DEBUG_VALUE )
#define CERR( ANSWER ) cerr << ANSWER << endl;
#define LIBRARY_SEARCH if( LibrarySearch() != 0 ){ QUIT; };
#else
#pragma GCC optimize ( "O3" )
#pragma GCC optimize( "unroll-loops" )
#pragma GCC target ( "sse4.2,fma,avx2,popcnt,lzcnt,bmi2" )
#define UNTIE ios_base::sync_with_stdio( false ); cin.tie( nullptr )
#define DEXPR( LL , BOUND , VALUE , DEBUG_VALUE ) CEXPR( LL , BOUND , VALUE )
#define CERR( ANSWER )
#define LIBRARY_SEARCH
#endif
#include <bits/stdc++.h>
using namespace std;
using uint = unsigned int;
using ll = long long;
using ull = unsigned long long;
#define ATT __attribute__( ( target( "sse4.2,fma,avx2,popcnt,lzcnt,bmi2" ) ) )
#define TYPE_OF( VAR ) decay_t<decltype( VAR )>
#define CEXPR( LL , BOUND , VALUE ) constexpr LL BOUND = VALUE
#define CIN( LL , A ) LL A; cin >> A
#define ASSERT( A , MIN , MAX ) assert( ( MIN ) <= A && A <= ( MAX ) )
#define CIN_ASSERT( A , MIN , MAX ) CIN( TYPE_OF( MAX ) , A ); ASSERT( A , MIN , MAX )
#define SET_ASSERT( A , MIN , MAX ) cin >> A; ASSERT( A , MIN , MAX )
#define GETLINE( A ) string A; getline( cin , A )
#define GETLINE_SEPARATE( A , SEPARATOR ) string A; getline( cin , A , SEPARATOR )
#define FOR( VAR , INITIAL , FINAL_PLUS_ONE ) for( TYPE_OF( FINAL_PLUS_ONE ) VAR = INITIAL ; VAR < FINAL_PLUS_ONE ; VAR ++ )
#define FOREQ( VAR , INITIAL , FINAL ) for( TYPE_OF( FINAL ) VAR = INITIAL ; VAR <= FINAL ; VAR ++ )
#define FOREQINV( VAR , INITIAL , FINAL ) for( TYPE_OF( INITIAL ) VAR = INITIAL ; VAR >= FINAL ; VAR -- )
#define FOR_ITR( ARRAY , ITR , END ) for( auto ITR = ARRAY .begin() , END = ARRAY .end() ; ITR != END ; ITR ++ )
#define REPEAT( HOW_MANY_TIMES ) FOR( VARIABLE_FOR_REPEAT , 0 , HOW_MANY_TIMES )
#define QUIT return 0
#define COUT( ANSWER ) cout << ( ANSWER ) << "\n"
#define RETURN( ANSWER ) COUT( ANSWER ); QUIT
#define SET_PRECISION( PRECISION ) cout << fixed << setprecision( PRECISION )
#define DOUBLE( PRECISION , ANSWER ) SET_PRECISION << ( ANSWER ) << "\n"; QUIT
inline void AlertAbort( int n ) { cerr <<
    "abortassert" << endl; }
template <typename T> inline T Absolute( const T& a ){ return a > 0 ? a : -a; }
template <typename T> inline T Residue( const T& a , const T& p ){ return a >= 0 ? a % p : ( a % p ) + p; }
#define POWER( ANSWER , ARGUMENT , EXPONENT ) \
static_assert( ! is_same<TYPE_OF( ARGUMENT ),int>::value && ! is_same<TYPE_OF( ARGUMENT ),uint>::value ); \
TYPE_OF( ARGUMENT ) ANSWER{ 1 }; \
{ \
TYPE_OF( ARGUMENT ) ARGUMENT_FOR_SQUARE_FOR_POWER = ( ARGUMENT ); \
TYPE_OF( EXPONENT ) EXPONENT_FOR_SQUARE_FOR_POWER = ( EXPONENT ); \
while( EXPONENT_FOR_SQUARE_FOR_POWER != 0 ){ \
if( EXPONENT_FOR_SQUARE_FOR_POWER % 2 == 1 ){ \
ANSWER *= ARGUMENT_FOR_SQUARE_FOR_POWER; \
} \
ARGUMENT_FOR_SQUARE_FOR_POWER *= ARGUMENT_FOR_SQUARE_FOR_POWER; \
EXPONENT_FOR_SQUARE_FOR_POWER /= 2; \
} \
} \
#define POWER_MOD( ANSWER , ARGUMENT , EXPONENT , MODULO ) \
ll ANSWER{ 1 }; \
{ \
ll ARGUMENT_FOR_SQUARE_FOR_POWER = ( MODULO + ( ( ARGUMENT ) % MODULO ) ) % MODULO; \
TYPE_OF( EXPONENT ) EXPONENT_FOR_SQUARE_FOR_POWER = ( EXPONENT ); \
while( EXPONENT_FOR_SQUARE_FOR_POWER != 0 ){ \
if( EXPONENT_FOR_SQUARE_FOR_POWER % 2 == 1 ){ \
ANSWER = ( ANSWER * ARGUMENT_FOR_SQUARE_FOR_POWER ) % MODULO; \
} \
ARGUMENT_FOR_SQUARE_FOR_POWER = ( ARGUMENT_FOR_SQUARE_FOR_POWER * ARGUMENT_FOR_SQUARE_FOR_POWER ) % MODULO; \
EXPONENT_FOR_SQUARE_FOR_POWER /= 2; \
} \
} \
#define FACTORIAL_MOD( ANSWER , ANSWER_INV , INVERSE , MAX_INDEX , CONSTEXPR_LENGTH , MODULO ) \
static ll ANSWER[CONSTEXPR_LENGTH]; \
static ll ANSWER_INV[CONSTEXPR_LENGTH]; \
static ll INVERSE[CONSTEXPR_LENGTH]; \
{ \
ll VARIABLE_FOR_PRODUCT_FOR_FACTORIAL = 1; \
ANSWER[0] = VARIABLE_FOR_PRODUCT_FOR_FACTORIAL; \
FOREQ( i , 1 , MAX_INDEX ){ \
ANSWER[i] = ( VARIABLE_FOR_PRODUCT_FOR_FACTORIAL *= i ) %= MODULO; \
} \
ANSWER_INV[0] = ANSWER_INV[1] = INVERSE[1] = VARIABLE_FOR_PRODUCT_FOR_FACTORIAL = 1; \
FOREQ( i , 2 , MAX_INDEX ){ \
ANSWER_INV[i] = ( VARIABLE_FOR_PRODUCT_FOR_FACTORIAL *= INVERSE[i] = MODULO - ( ( ( MODULO / i ) * INVERSE[MODULO % i] ) % MODULO ) ) %= MODULO
          ; \
} \
} \
//
// EXPRESSIONANSWER調EXPRESSION >= TARGET
// 調>
#define BS1( ANSWER , MINIMUM , MAXIMUM , EXPRESSION , TARGET ) \
static_assert( ! is_same<TYPE_OF( TARGET ),uint>::value && ! is_same<TYPE_OF( TARGET ),ull>::value ); \
ll ANSWER = MINIMUM; \
if( MINIMUM <= MAXIMUM ){ \
ll VARIABLE_FOR_BINARY_SEARCH_L = MINIMUM; \
ll VARIABLE_FOR_BINARY_SEARCH_U = MAXIMUM; \
ANSWER = ( VARIABLE_FOR_BINARY_SEARCH_L + VARIABLE_FOR_BINARY_SEARCH_U ) / 2; \
ll VARIABLE_FOR_DIFFERENCE_FOR_BINARY_SEARCH; \
while( VARIABLE_FOR_BINARY_SEARCH_L != VARIABLE_FOR_BINARY_SEARCH_U ){ \
VARIABLE_FOR_DIFFERENCE_FOR_BINARY_SEARCH = ( EXPRESSION ) - ( TARGET ); \
CERR( VARIABLE_FOR_BINARY_SEARCH_L << "<=" << ANSWER << "<=" << VARIABLE_FOR_BINARY_SEARCH_U << ":" << EXPRESSION << "-" << TARGET << "=" <<
          VARIABLE_FOR_DIFFERENCE_FOR_BINARY_SEARCH ); \
if( VARIABLE_FOR_DIFFERENCE_FOR_BINARY_SEARCH == 0 ){ \
break; \
} else { \
if( VARIABLE_FOR_DIFFERENCE_FOR_BINARY_SEARCH > 0 ){ \
VARIABLE_FOR_BINARY_SEARCH_U = ANSWER; \
} else { \
VARIABLE_FOR_BINARY_SEARCH_L = ANSWER + 1; \
} \
ANSWER = ( VARIABLE_FOR_BINARY_SEARCH_L + VARIABLE_FOR_BINARY_SEARCH_U ) / 2; \
} \
} \
CERR( VARIABLE_FOR_BINARY_SEARCH_L << "<=" << ANSWER << "<=" << VARIABLE_FOR_BINARY_SEARCH_U << ":" << EXPRESSION << "-" << TARGET << ">=0" ); \
} else { \
CERR( MINIMUM << ">" << MAXIMUM << "" ); \
} \
//
// EXPRESSIONANSWER調EXPRESSION <= TARGET
// 調<
#define BS2( ANSWER , MINIMUM , MAXIMUM , EXPRESSION , TARGET ) \
static_assert( ! is_same<TYPE_OF( TARGET ),uint>::value && ! is_same<TYPE_OF( TARGET ),ull>::value ); \
ll ANSWER = MINIMUM; \
if( MINIMUM <= MAXIMUM ){ \
ll VARIABLE_FOR_BINARY_SEARCH_L = MINIMUM; \
ll VARIABLE_FOR_BINARY_SEARCH_U = MAXIMUM; \
ANSWER = ( VARIABLE_FOR_BINARY_SEARCH_L + VARIABLE_FOR_BINARY_SEARCH_U ) / 2; \
ll VARIABLE_FOR_DIFFERENCE_FOR_BINARY_SEARCH; \
while( VARIABLE_FOR_BINARY_SEARCH_L != VARIABLE_FOR_BINARY_SEARCH_U ){ \
VARIABLE_FOR_DIFFERENCE_FOR_BINARY_SEARCH = ( EXPRESSION ) - ( TARGET ); \
CERR( VARIABLE_FOR_BINARY_SEARCH_L << "<=" << ANSWER << "<=" << VARIABLE_FOR_BINARY_SEARCH_U << ":" << EXPRESSION << "-" << TARGET << "=" <<
          VARIABLE_FOR_DIFFERENCE_FOR_BINARY_SEARCH ); \
if( VARIABLE_FOR_DIFFERENCE_FOR_BINARY_SEARCH == 0 ){ \
break; \
} else { \
if( VARIABLE_FOR_DIFFERENCE_FOR_BINARY_SEARCH < 0 ){ \
VARIABLE_FOR_BINARY_SEARCH_L = ANSWER; \
} else { \
VARIABLE_FOR_BINARY_SEARCH_U = ANSWER - 1; \
} \
ANSWER = ( VARIABLE_FOR_BINARY_SEARCH_L + 1 + VARIABLE_FOR_BINARY_SEARCH_U ) / 2; \
} \
} \
CERR( VARIABLE_FOR_BINARY_SEARCH_L << "<=" << ANSWER << "<=" << VARIABLE_FOR_BINARY_SEARCH_U << ":" << EXPRESSION << "-" << TARGET << "<=0" ); \
} else { \
CERR( MINIMUM << ">" << MAXIMUM << "" ); \
} \
//
// EXPRESSIONANSWER調EXPRESSION >= TARGET
// 調>
#define BS3( ANSWER , MINIMUM , MAXIMUM , EXPRESSION , TARGET ) \
static_assert( ! is_same<TYPE_OF( TARGET ),uint>::value && ! is_same<TYPE_OF( TARGET ),ull>::value ); \
ll ANSWER = MINIMUM; \
if( MINIMUM <= MAXIMUM ){ \
ll VARIABLE_FOR_BINARY_SEARCH_L = MINIMUM; \
ll VARIABLE_FOR_BINARY_SEARCH_U = MAXIMUM; \
ANSWER = ( VARIABLE_FOR_BINARY_SEARCH_L + VARIABLE_FOR_BINARY_SEARCH_U ) / 2; \
ll VARIABLE_FOR_DIFFERENCE_FOR_BINARY_SEARCH; \
while( VARIABLE_FOR_BINARY_SEARCH_L != VARIABLE_FOR_BINARY_SEARCH_U ){ \
VARIABLE_FOR_DIFFERENCE_FOR_BINARY_SEARCH = ( EXPRESSION ) - ( TARGET ); \
CERR( VARIABLE_FOR_BINARY_SEARCH_L << "<=" << ANSWER << "<=" << VARIABLE_FOR_BINARY_SEARCH_U << ":" << EXPRESSION << "-" << TARGET << "=" <<
          VARIABLE_FOR_DIFFERENCE_FOR_BINARY_SEARCH ); \
if( VARIABLE_FOR_DIFFERENCE_FOR_BINARY_SEARCH == 0 ){ \
break; \
} else { \
if( VARIABLE_FOR_DIFFERENCE_FOR_BINARY_SEARCH > 0 ){ \
VARIABLE_FOR_BINARY_SEARCH_L = ANSWER; \
} else { \
VARIABLE_FOR_BINARY_SEARCH_U = ANSWER - 1; \
} \
ANSWER = ( VARIABLE_FOR_BINARY_SEARCH_L + 1 + VARIABLE_FOR_BINARY_SEARCH_U ) / 2; \
} \
} \
CERR( VARIABLE_FOR_BINARY_SEARCH_L << "<=" << ANSWER << "<=" << VARIABLE_FOR_BINARY_SEARCH_U << ":" << EXPRESSION << "-" << TARGET << ">=0" ); \
} else { \
CERR( MINIMUM << ">" << MAXIMUM << "" ); \
} \
//
// EXPRESSIONANSWER調EXPRESSION <= TARGET
// 調<
#define BS4( ANSWER , MINIMUM , MAXIMUM , EXPRESSION , TARGET ) \
static_assert( ! is_same<TYPE_OF( TARGET ),uint>::value && ! is_same<TYPE_OF( TARGET ),ull>::value ); \
ll ANSWER = MINIMUM; \
if( MINIMUM <= MAXIMUM ){ \
ll VARIABLE_FOR_BINARY_SEARCH_L = MINIMUM; \
ll VARIABLE_FOR_BINARY_SEARCH_U = MAXIMUM; \
ANSWER = ( VARIABLE_FOR_BINARY_SEARCH_L + VARIABLE_FOR_BINARY_SEARCH_U ) / 2; \
ll VARIABLE_FOR_DIFFERENCE_FOR_BINARY_SEARCH; \
while( VARIABLE_FOR_BINARY_SEARCH_L != VARIABLE_FOR_BINARY_SEARCH_U ){ \
VARIABLE_FOR_DIFFERENCE_FOR_BINARY_SEARCH = ( EXPRESSION ) - ( TARGET ); \
CERR( VARIABLE_FOR_BINARY_SEARCH_L << "<=" << ANSWER << "<=" << VARIABLE_FOR_BINARY_SEARCH_U << ":" << EXPRESSION << "-" << TARGET << "=" <<
          VARIABLE_FOR_DIFFERENCE_FOR_BINARY_SEARCH ); \
if( false ){ \
} else { \
if( VARIABLE_FOR_DIFFERENCE_FOR_BINARY_SEARCH <= 0 ){ \
VARIABLE_FOR_BINARY_SEARCH_U = ANSWER; \
} else { \
VARIABLE_FOR_BINARY_SEARCH_L = ANSWER + 1; \
} \
ANSWER = ( VARIABLE_FOR_BINARY_SEARCH_L + VARIABLE_FOR_BINARY_SEARCH_U ) / 2; \
} \
} \
CERR( VARIABLE_FOR_BINARY_SEARCH_L << "<=" << ANSWER << "<=" << VARIABLE_FOR_BINARY_SEARCH_U << ":" << EXPRESSION << "-" << TARGET << "<=0" ); \
} else { \
CERR( MINIMUM << ">" << MAXIMUM << "" ); \
} \
//
// EXPRESSIONANSWER調EXPRESSION <= TARGET
#define BBS( ANSWER , MINIMUM , MAXIMUM , EXPRESSION , TARGET ) \
ll ANSWER = MINIMUM; \
if( MINIMUM <= MAXIMUM ){ \
ll VARIABLE_FOR_POWER_FOR_BINARY_SEARCH = 1; \
ll VARIABLE_FOR_DIFFERENCE_FOR_BINARY_SEARCH = ( MAXIMUM ) - ANSWER; \
while( VARIABLE_FOR_POWER_FOR_BINARY_SEARCH <= VARIABLE_FOR_DIFFERENCE_FOR_BINARY_SEARCH ){ \
VARIABLE_FOR_POWER_FOR_BINARY_SEARCH *= 2; \
} \
VARIABLE_FOR_POWER_FOR_BINARY_SEARCH /= 2; \
ll VARIABLE_FOR_ANSWER_FOR_BINARY_SEARCH = ANSWER; \
while( VARIABLE_FOR_POWER_FOR_BINARY_SEARCH != 0 ){ \
ANSWER = VARIABLE_FOR_ANSWER_FOR_BINARY_SEARCH + VARIABLE_FOR_POWER_FOR_BINARY_SEARCH; \
VARIABLE_FOR_DIFFERENCE_FOR_BINARY_SEARCH = ( EXPRESSION ) - ( TARGET ); \
if( VARIABLE_FOR_DIFFERENCE_FOR_BINARY_SEARCH == 0 ){ \
VARIABLE_FOR_ANSWER_FOR_BINARY_SEARCH = ANSWER; \
break; \
} else if( VARIABLE_FOR_DIFFERENCE_FOR_BINARY_SEARCH < 0 ){ \
VARIABLE_FOR_ANSWER_FOR_BINARY_SEARCH = ANSWER; \
} \
VARIABLE_FOR_POWER_FOR_BINARY_SEARCH /= 2; \
} \
ANSWER = VARIABLE_FOR_ANSWER_FOR_BINARY_SEARCH; \
} else { \
CERR( MINIMUM << ">" << MAXIMUM << "" ); \
} \
//
#define TE template
#define TY typename
#define US using
#define ST static
#define IN inline
#define CL class
#define PU public
#define OP operator
#define CE constexpr
#define CO const
#define NE noexcept
#define RE return
#define WH while
#define VO void
#define VE vector
#define LI list
#define BE begin
#define EN end
#define SZ size
#define MO move
#define TH this
#define CRI CO int&
#define CRUI CO uint&
#define CRL CO ll&
int QuitLibrarySearch( const int& problems_size ){
cerr << "" << problems_size - 1 << "";
CERR( "" );
CERR( "" );
return -1;
}
int LibrarySearch( int num = -1 )
{
vector<string> problems =
{
"" ,
"" ,
"" ,
"" ,
"" ,
"" ,
"" ,
"" ,
"" ,
"" ,
"" ,
"" ,
"" ,
"" ,
""
};
CEXPR( int , num_graph , 5 );
CEXPR( int , num_subsequence_sum , 6 );
CEXPR( int , num_game , 8 );
int problems_size = problems.size();
string reply{};
if( num == -1 ){
CERR( "[y/n]" );
CIN( string , reply );
if( reply == "n" ){
CERR( "" );
CERR( "" );
return 0;
} else if( reply != "y" ){
CERR( "y/n" );
CERR( "" );
CERR( "" );
return -1;
}
CERR( "" );
CERR( "" );
CERR( "" );
FOR( i , 0 , problems_size ){
CERR( i << ": " << problems[i] );
}
cin >> num;
}
CERR( "" );
int num_temp = 0;
if( num < 0 || num >= problems_size ){
return QuitLibrarySearch( problems_size );
} else if( num == num_temp++ ){
CERR( "[y/n/c]" );
cin >> reply;
CERR( "" );
if( reply == "y" ){
CERR( "OEIS" );
CERR( "https://oeis.org/?language=japanese" );
CERR( "" );
CERR( "" );
CERR( "- 調" );
CERR( "- p使" );
CERR( "- pp" );
CERR( " " );
CERR( "" );
} else if( reply == "n" ){
CERR( "" );
} else if( reply == "c" ){
CERR( "" );
CERR( "" );
return -1;
} else {
CERR( "y/n/c" );
CERR( "" );
CERR( "" );
return -1;
}
CERR( "" );
CERR( "" );
CERR( "" );
} else if( num == num_temp++ ){
CERR( "" );
problems =
{
"" ,
"" ,
"" ,
"" ,
""
};
problems_size = problems.size();
FOR( i , 0 , problems_size ){
CERR( i << ": " << problems[i] );
}
CIN( int , num );
CERR( "" );
num_temp = 0;
if( num < 0 || num >= problems_size ){
return QuitLibrarySearch( problems_size );
} else if( num == num_temp++ ){
CERR( "" );
CERR( "- +使BIT" );
CERR( " \\Mathematics\\SetTheory\\DirectProduct\\AffineSpace\\BIT\\Template")
CERR( "- 使BIT" );
CERR( " \\Mathematics\\SetTheory\\DirectProduct\\AffineSpace\\BIT\\IntervalMax\\Template" );
CERR( "- *使BIT" );
CERR( " \\Mathematics\\SetTheory\\DirectProduct\\AffineSpace\\BIT\\Template\\Monoid" );
CERR( " \\Mathematics\\SetTheory\\DirectProduct\\AffineSpace\\SqrtDecomposition\\Template\\Monoid" );
CERR( "- (*,\\cdot)使" );
CERR( " \\Mathematics\\SetTheory\\DirectProduct\\AffineSpace\\SqrtDecomposition\\Template\\Dual" );
CERR( "- (+,\\cdot)使" );
CERR( " \\Mathematics\\SetTheory\\DirectProduct\\AffineSpace\\SqrtDecomposition\\Template\\LazyEvaluation" );
CERR( "- 使" );
CERR( " \\Mathematics\\Function\\Encoder" );
CERR( "- (+,max)使" );
CERR( " " );
CERR( " B_qmax(A_i,B_q)" );
CERR( " - A'={(A_i,i)|i}O(N log N)" );
CERR( " - (B_q,q)_qB'O(Q log Q)" );
CERR( " - NC=(0,...,0)O(N)" );
CERR( " B'(B_q,q)" );
CERR( " A'A_i<B_qi" );
CERR( " - A'(A_i,i)O(N)" );
CERR( " - A_i0O(N log N)" );
CERR( " - C_i1O(log N)" );
CERR( " - A+C×B_qO(log N)" );
CERR( " O((N + Q)log N + Q log Q)" );
CERR( "" );
} else if( num == num_temp++ ){
CERR( "fx" );
CERR( "- ixX(i)" );
CERR( "- ixi+1xdX(i)" );
CERR( "" );
CERR( "- O(sum_i X(i) dX(i))fxO(1)ix" );
CERR( "- O(N log_2 X)fxO(N)x調x" );
CERR( "- O(N log_2 N)xfxO(log_2 N)" );
CERR( " x" );
CERR( "" );
} else if( num == num_temp++ ){
CERR( "" );
CERR( "- " );
CERR( " " );
CERR( "- " );
CERR( " " );
CERR( "" );
} else if( num == num_temp++ ){
CERR( "gcdmax" );
CERR( "" );
} else {
return LibrarySearch( num = num_subsequence_sum );
}
} else if( num == num_temp++ ){
CERR( "" );
problems =
{
"" ,
"" ,
};
problems_size = problems.size();
FOR( i , 0 , problems_size ){
CERR( i << ": " << problems[i] );
}
CIN( int , num );
CERR( "" );
num_temp = 0;
if( num < 0 || num >= problems_size ){
return QuitLibrarySearch( problems_size );
} else if( num == num_temp++ ){
CERR( "" );
CERR( "- " );
CERR( "- " );
CERR( " - O(N)" );
CERR( " - O(N)" );
CERR( "- " );
CERR( "- Z" );
CERR( " https://qiita.com/Pro_ktmr/items/16904c9570aa0953bf05" );
CERR( "" );
} else {
CERR( "" );
CERR( "- O(N^2)" );
CERR( "- O(N^2)Manacher" );
CERR( " https://snuke.hatenablog.com/entry/2014/12/02/235837" );
CERR( "" );
}
} else if( num == num_temp++ ){
CERR( "" );
CERR( "" );
CERR( "- O(N^3)" );
CERR( "- O(N 2^N)" );
CERR( "" );
CERR( "" );
CERR( "" );
CERR( "- O(N^2)" );
CERR( "- O(N log_2 N)BIT" );
CERR( " \\Mathematics\\Combinatorial\\Permutation" );
CERR( " \\Mathematics\\SetTheory\\DirectProduct\\AffineSpace\\BIT" );
CERR( "" );
CERR( "" );
CERR( "" );
CERR( "i<j" );
CERR( "" );
CERR( "" );
} else if( num == num_temp++ ){
CERR( "" );
problems =
{
"" ,
"" ,
""
};
problems_size = problems.size();
FOR( i , 0 , problems_size ){
CERR( i << ": " << problems[i] );
}
CIN( int , num );
CERR( "" );
num_temp = 0;
if( num < 0 || num >= problems_size ){
return QuitLibrarySearch( problems_size );
} else if( num == num_temp++ ){
CERR( "" );
return LibrarySearch( num = num_graph );
} else if( num == num_temp++ ){
CERR( "" );
CERR( "- 調" );
CERR( "- " );
CERR( "- " );
CERR( "" );
} else if( num == num_temp++ ){
CERR( "" );
CERR( "- O(HW)" );
CERR( "- O(HW)" );
CERR( "" );
CERR( "" );
CERR( "" );
CERR( "- " );
CERR( "- " );
CERR( "" );
}
} else if( num == num_temp++ ){
CERR( "" );
problems =
{
"" ,
"" ,
"" ,
""
};
problems_size = problems.size();
FOR( i , 0 , problems_size ){
CERR( i << ": " << problems[i] );
}
CIN( int , num );
CERR( "" );
num_temp = 0;
if( num < 0 || num >= problems_size ){
return QuitLibrarySearch( problems_size );
} else if( num == num_temp++ ){
CERR( "" );
CERR( "" );
CERR( "- BFSDijkstra" );
CERR( " \\Utility\\Search\\BreadthFirst" );
CERR( " \\Utility\\Search\\Dijkstra" );
CERR( "- " );
CERR( " - O(V^3)FloydWarshall" );
CERR( " \\Utility\\Search\\FloydWarshall" );
CERR( " - maxO(E(log_2 E + α(V)))UnionFind" );
CERR( " \\Utility\\VLTree\\UnionFindForest" );
CERR( "" );
} else if( num == num_temp++ ){
CERR( "HeldKarp" );
} else if( num == num_temp++ ){
CERR( "" );
CERR( "\\Utility\\Search\\DepthFirst" );
CERR( "\\Utility\\VLTree" );
} else {
CERR( "- 0UnionFind" );
CERR( " \\Utility\\VLTree\\UnionFindForest" );
CERR( "- " );
CERR( " \\Utility\\Search\\DepthFirst" );
CERR( "- " );
CERR( "" );
}
} else if( num == num_temp++ ){
CERR( "" );
problems =
{
"" ,
""
};
problems_size = problems.size();
FOR( i , 0 , problems_size ){
CERR( i << ": " << problems[i] );
}
CIN( int , num );
CERR( "" );
num_temp = 0;
if( num < 0 || num >= problems_size ){
return QuitLibrarySearch( problems_size );
} else if( num == num_temp++ ){
CERR( "NWV" );
CERR( "- B=∞" );
CERR( "- B<∞O(2^N)" );
CERR( "- B<∞O(2^{N/2} N)" );
CERR( "- B<∞O(NV)[B-V,B+V]" );
CERR( " " );
CERR( " https://stackoverflow.com/a/18949218" );
CERR( "- W10^5O((N+W)log_2 W)" );
CERR( " " );
CERR( " \\Mathematics\\Polynomial" );
} else {
CERR( "NW" );
CERR( "- O(2^N)" );
CERR( "- O(2^N)" );
CERR( "- O(2^{N/2}N)" );
CERR( " " );
CERR( "- W10^5O((N+W)log_2 W)" );
CERR( " " );
CERR( " \\Mathematics\\Polynomial" );
}
CERR( "" );
} else if( num == num_temp++ ){
CERR( "使" );
} else if( num == num_temp++ ){
CERR( "" );
CERR( "" );
} else if( num == num_temp++ ){
CERR( "" );
CERR( "- " );
CERR( " \\Mathematics\\SetTheory\\DirectProduct\\AffineSpace" );
CERR( "- UnionFind" );
CERR( " \\Utility\\VLTree\\UnionFindForest" );
CERR( "" );
} else if( num == num_temp++ ){
CERR( "" );
problems =
{
"" ,
""
};
problems_size = problems.size();
FOR( i , 0 , problems_size ){
CERR( i << ": " << problems[i] );
}
CIN( int , num );
CERR( "" );
num_temp = 0;
if( num < 0 || num >= problems_size ){
return QuitLibrarySearch( problems_size );
} else if( num == num_temp++ ){
CERR( "" );
} else if( num == num_temp++ ){
CERR( "" );
return LibrarySearch( num = num_graph );
}
} else if( num == num_temp++ ){
CERR( "" );
problems =
{
"" ,
""
};
problems_size = problems.size();
FOR( i , 0 , problems_size ){
CERR( i << ": " << problems[i] );
}
CIN( int , num );
CERR( "" );
num_temp = 0;
if( num < 0 || num >= problems_size ){
return QuitLibrarySearch( problems_size );
} else if( num == num_temp++ ){
CERR( "NTK" );
CERR( "- O((N + T)log_2 K)" );
CERR( " \\Mathematics\\Function\\Iteration\\Doubling" );
CERR( "- O(TN)" );
CERR( " \\Mathematics\\Function\\Iteration\\LoopDetection" );
CERR( "" );
} else {
CERR( "" );
return LibrarySearch( num = num_graph );
}
} else if( num == num_temp++ ){
CERR( "" );
problems =
{
"" ,
"" ,
""
};
problems_size = problems.size();
FOR( i , 0 , problems_size ){
CERR( i << ": " << problems[i] );
}
CIN( int , num );
CERR( "" );
num_temp = 0;
if( num < 0 || num >= problems_size ){
return QuitLibrarySearch( problems_size );
} else if( num == num_temp++ ){
CERR( "p" );
} else if( num == num_temp++ ){
CERR( "" );
return LibrarySearch( num = num_graph );
} else if( num == num_temp++ ){
CERR( "" );
return LibrarySearch( num = num_game );
}
}
CERR( "" );
CERR( "" );
CERR( "" );
return -1;
}
#define DIJKSTRA_BODY( INITIALISE_PREV , SET_PREV ) \
static const U& unit = Unit(); \
assert( unit != m_found && unit < m_infty ); \
U weight[size_max]; \
\
for( int i = 0 ; i < m_size ; i++ ){ \
\
weight[i] = m_infty; \
\
} \
\
set<pair<U,int> > vertex{}; \
const int i_start = e_inv( t_start ); \
const int i_final = e_inv( t_final ); \
vertex.insert( pair<U,int>( weight[i_start] = unit , i_start ) ); \
INITIALISE_PREV; \
\
while( ! vertex.empty() ){ \
\
auto itr_vertex = vertex.begin(); \
const pair<U,int> v = *itr_vertex; \
const int& i = v.second; \
\
if( i == i_final ){ \
\
break; \
\
} \
\
const U& u = v.first; \
weight[i] = m_found; \
vertex.erase( itr_vertex ); \
const list<pair<T,U> > edge_i = E( e( i ) ); \
list<pair<U,int> > changed_vertex{}; \
\
for( auto itr_edge_i = edge_i.begin() , end_edge_i = edge_i.end() ; itr_edge_i != end_edge_i ; itr_edge_i++ ){ \
\
const int& j = e_inv( itr_edge_i->first ); \
U& weight_j = weight[j]; \
\
if( weight_j != m_found ){ \
\
const U& edge_ij = itr_edge_i->second; \
const U temp = Addition( u , edge_ij ); \
assert( edge_ij != m_found && temp != m_found && !( temp < edge_ij ) && temp < m_infty ); \
\
if( weight_j > temp ){ \
\
if( weight_j != m_infty ){ \
\
vertex.erase( pair<U,int>( weight_j , j ) ); \
\
} \
\
SET_PREV; \
changed_vertex.push_back( pair<U,int>( weight_j = temp , j ) ); \
\
} \
\
} \
\
} \
\
for( auto itr_changed = changed_vertex.begin() , end_changed = changed_vertex.end() ; itr_changed != end_changed ; itr_changed++ ){ \
\
vertex.insert( *itr_changed ); \
\
} \
\
} \
template <typename T , typename U , list<pair<T,U> > E(const T&) , int size_max>
class DijkstraBody
{
private:
int m_size;
U m_infty;
U m_found;
int m_length;
map<T,int> m_memory;
vector<T> m_memory_inv;
public:
inline DijkstraBody( const int& size , const U& infty , const U& found );
U Solve( const T& t_start , const T& t_final );
U Solve( const T& t_start , const T& t_final , list<T>& path );
private:
virtual const U& Unit() const = 0;
virtual U Addition( const U& , const U& ) const = 0;
virtual T e( const int& i );
virtual int e_inv( const T& t );
virtual void Reset();
};
//
// (1) E20
// (2) 2^{31}-1E2size_max
//
template <list<pair<int,ll> > E(const int&) , int size_max>
class Dijkstra :
public DijkstraBody<int,ll,E,size_max>
{
public:
inline Dijkstra( const int& size );
private:
inline const ll& Unit() const;
inline ll Addition( const ll& , const ll& ) const;
inline int e( const int& i );
inline int e_inv( const int& t );
inline void Reset();
};
//
// (1) E2e_T()
// (2) inftyE2size_max
// (3) foundE2size_maxinfty
// (4) (U,m_U:U^2->U,e_U:1->U)bool operator<(const U&,const U&)
//
template <typename T , typename U , U m_U(const U&,const U&) , const U& e_U() , list<pair<T,U> > E(const T&) , int size_max>
class MemorisationDijkstra :
public DijkstraBody<T,U,E,size_max>
{
public:
inline MemorisationDijkstra( const int& size , const U& infty = 2147483647 , const U& found = -1 );
private:
inline const U& Unit() const;
inline U Addition( const U& , const U& ) const;
};
//
// (1) E2e_T()
// (2) inftyE2size_max
// (3) foundE2size_maxinfty
// (4) (U,m_U:U^2->U,e_U:1->U)bool operator<(const U&,const U&)
// (5) (enum_T,enum_T_inv)
//
template <typename T , typename U , U m_U(const U&,const U&) , const U& e_U() , list<pair<T,U> > E(const T&) , int size_max , T enum_T(const int&) ,
    int enum_T_inv(const T&)>
class EnumerationDijkstra :
public DijkstraBody<T,U,E,size_max>
{
public:
inline EnumerationDijkstra( const int& size , const U& infty = 2147483647 , const U& found = -1 );
private:
inline const U& Unit() const;
inline U Addition( const U& , const U& ) const;
inline T e( const int& i );
inline int e_inv( const T& t );
inline void Reset();
};
template <typename T , typename U , list<pair<T,U> > E(const T&) , int size_max> inline DijkstraBody<T,U,E,size_max>::DijkstraBody( const int& size ,
    const U& infty , const U& found ) : m_size( size ) , m_infty( infty ) , m_found( found ) , m_length() , m_memory() , m_memory_inv() {}
template <list<pair<int,ll> > E(const int&) , int size_max> inline Dijkstra<E,size_max>::Dijkstra( const int& size ) : DijkstraBody<int,ll,E,size_max
    >( size , 2147483647 , -1 ) {}
template <typename T , typename U , U m_U(const U&,const U&) , const U& e_U() , list<pair<T,U> > E(const T&) , int size_max> inline
    MemorisationDijkstra<T,U,m_U,e_U,E,size_max>::MemorisationDijkstra( const int& size , const U& infty , const U& found ) : DijkstraBody<T,U,E
    ,size_max>( size , infty , found ) {}
template <typename T , typename U , U m_U(const U&,const U&) , const U& e_U() , list<pair<T,U> > E(const T&) , int size_max , T enum_T(const int&) ,
    int enum_T_inv(const T&)> inline EnumerationDijkstra<T,U,m_U,e_U,E,size_max,enum_T,enum_T_inv>::EnumerationDijkstra( const int& size , const U&
    infty , const U& found ) : DijkstraBody<T,U,E,size_max>( size , infty , found ) {}
template <typename T , typename U , list<pair<T,U> > E(const T&) , int size_max>
U DijkstraBody<T,U,E,size_max>::Solve( const T& t_start , const T& t_final )
{
DIJKSTRA_BODY( , );
Reset();
return weight[i_final];
}
template <typename T , typename U , list<pair<T,U> > E(const T&) , int size_max>
U DijkstraBody<T,U,E,size_max>::Solve( const T& t_start , const T& t_final , list<T>& path )
{
DIJKSTRA_BODY( T prev[size_max] = {} , prev[j] = i );
int i = i_final;
while( i != i_start ){
path.push_front( e( i ) );
i = prev[i];
}
path.push_front( t_start );
Reset();
return weight[i_final];
}
template <list<pair<int,ll> > E(const int&) , int size_max> inline const ll& Dijkstra<E,size_max>::Unit() const { static const ll unit = 0; return
    unit; }
template <typename T , typename U , U m_U(const U&,const U&) , const U& e_U() , list<pair<T,U> > E(const T&) , int size_max> inline const U&
    MemorisationDijkstra<T,U,m_U,e_U,E,size_max>::Unit() const { return e_U(); }
template <typename T , typename U , U m_U(const U&,const U&) , const U& e_U() , list<pair<T,U> > E(const T&) , int size_max , T enum_T(const int&) ,
    int enum_T_inv(const T&)> inline const U& EnumerationDijkstra<T,U,m_U,e_U,E,size_max,enum_T,enum_T_inv>::Unit() const { return e_U(); }
template <list<pair<int,ll> > E(const int&) , int size_max> inline ll Dijkstra<E,size_max>::Addition( const ll& u0 , const ll& u1 ) const { return u0
    + u1; }
template <typename T , typename U , U m_U(const U&,const U&) , const U& e_U() , list<pair<T,U> > E(const T&) , int size_max> inline U
    MemorisationDijkstra<T,U,m_U,e_U,E,size_max>::Addition( const U& u0 , const U& u1 ) const { return m_U( u0 , u1 ); }
template <typename T , typename U , U m_U(const U&,const U&) , const U& e_U() , list<pair<T,U> > E(const T&) , int size_max , T enum_T(const int&) ,
    int enum_T_inv(const T&)> inline U EnumerationDijkstra<T,U,m_U,e_U,E,size_max,enum_T,enum_T_inv>::Addition( const U& u0 , const U& u1 ) const {
    return m_U( u0 , u1 ); }
template <typename T , typename U , list<pair<T,U> > E(const T&) , int size_max>
T DijkstraBody<T,U,E,size_max>::e( const int& i )
{
assert( i < m_length );
return m_memory_inv[i];
}
template <list<pair<int,ll> > E(const int&) , int size_max> inline int Dijkstra<E,size_max>::e( const int& i ) { return i; }
template <typename T , typename U , U m_U(const U&,const U&) , const U& e_U() , list<pair<T,U> > E(const T&) , int size_max , T enum_T(const int&) ,
    int enum_T_inv(const T&)> inline T EnumerationDijkstra<T,U,m_U,e_U,E,size_max,enum_T,enum_T_inv>::e( const int& i ) { return enum_T( i ); }
template <typename T , typename U , list<pair<T,U> > E(const T&) , int size_max>
int DijkstraBody<T,U,E,size_max>::e_inv( const T& t )
{
if( m_memory.count( t ) == 0 ){
assert( m_length < m_size );
m_memory_inv.push_back( t );
return m_memory[t] = m_length++;
}
return m_memory[t];
}
template <list<pair<int,ll> > E(const int&) , int size_max> inline int Dijkstra<E,size_max>::e_inv( const int& t ) { return t; }
template <typename T , typename U , U m_U(const U&,const U&) , const U& e_U() , list<pair<T,U> > E(const T&) , int size_max , T enum_T(const int&) ,
    int enum_T_inv(const T&)> inline int EnumerationDijkstra<T,U,m_U,e_U,E,size_max,enum_T,enum_T_inv>::e_inv( const T& t ) { return enum_T_inv( t );
    }
template <typename T , typename U , list<pair<T,U> > E(const T&) , int size_max>
void DijkstraBody<T,U,E,size_max>::Reset()
{
m_length = 0;
m_memory.clear();
m_memory_inv.clear();
return;
}
template <list<pair<int,ll> > E(const int&) , int size_max> inline void Dijkstra<E,size_max>::Reset() {}
template <typename T , typename U , U m_U(const U&,const U&) , const U& e_U() , list<pair<T,U> > E(const T&) , int size_max , T enum_T(const int&) ,
    int enum_T_inv(const T&)> inline void EnumerationDijkstra<T,U,m_U,e_U,E,size_max,enum_T,enum_T_inv>::Reset() {}
inline CEXPR( int , bound_N , 500 );
pair<int,int> v[bound_N + 2];
int N , P;
list<pair<int,ll> > E( const int& t )
{
pair<int,int>& vt = v[t];
list<pair<int,ll> > answer{};
FOR( i , 0 , N ){
pair<int,int>& vi = v[i];
int x = Absolute( vt.first - vi.first );
int y = Absolute( vt.second - vi.second );
if( x < y ){
swap( x , y );
}
answer.push_back( { i , ( x - 1 ) / P } );
}
return answer;
}
int k( const int& answer )
{
P = answer;
Dijkstra<E,bound_N+2> d{ N };
return d.Solve( 0 , 1 );
}
int main()
{
UNTIE;
LIBRARY_SEARCH;
// CEXPR( int , bound_T , 100000 );
// CIN_ASSERT( T , 1 , bound_T );
// CEXPR( int , bound_N , 100000 ); // 05
// CEXPR( ll , bound_N , 1000000000 ); // 09
// CEXPR( ll , bound_N , 1000000000000000000 ); // 018
SET_ASSERT( N , 1 , bound_N );
CEXPR( int , bound , 100000 ); // 05
CIN_ASSERT( K , 0 , bound );
N += 2;
FOR( i , 0 , N ){
CIN_ASSERT( x , 0 , bound );
CIN_ASSERT( y , 0 , bound );
v[i] = { x + y , x - y };
}
BS4( answer , 1 , bound , k( answer ) , K );
// REPEAT( T ){
// COUT( N );
// }
RETURN( answer );
}
הההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההה
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
0