結果

問題 No.529 帰省ラッシュ
ユーザー 草苺奶昔草苺奶昔
提出日時 2023-06-23 11:00:39
言語 Go
(1.23.4)
結果
AC  
実行時間 876 ms / 4,500 ms
コード長 20,257 bytes
コンパイル時間 11,108 ms
コンパイル使用メモリ 227,528 KB
実行使用メモリ 89,572 KB
最終ジャッジ日時 2024-06-30 16:06:38
合計ジャッジ時間 22,469 ms
ジャッジサーバーID
(参考情報)
judge3 / judge2
このコードへのチャレンジ
(要ログイン)

テストケース

テストケース表示
入力 結果 実行時間
実行使用メモリ
testcase_00 AC 1 ms
5,248 KB
testcase_01 AC 1 ms
5,376 KB
testcase_02 AC 1 ms
5,376 KB
testcase_03 AC 1 ms
5,376 KB
testcase_04 AC 9 ms
5,376 KB
testcase_05 AC 9 ms
5,376 KB
testcase_06 AC 10 ms
5,376 KB
testcase_07 AC 9 ms
5,376 KB
testcase_08 AC 621 ms
55,168 KB
testcase_09 AC 631 ms
53,504 KB
testcase_10 AC 684 ms
64,000 KB
testcase_11 AC 666 ms
64,000 KB
testcase_12 AC 495 ms
46,208 KB
testcase_13 AC 624 ms
85,376 KB
testcase_14 AC 641 ms
67,712 KB
testcase_15 AC 876 ms
89,572 KB
testcase_16 AC 857 ms
88,448 KB
testcase_17 AC 678 ms
82,816 KB
testcase_18 AC 686 ms
83,456 KB
testcase_19 AC 692 ms
69,632 KB
権限があれば一括ダウンロードができます

ソースコード

diff #

package main

import (
	"bufio"
	"fmt"
	"os"
)

func main() {
	in := bufio.NewReader(os.Stdin)
	out := bufio.NewWriter(os.Stdout)
	defer out.Flush()

	var n, m, q int
	fmt.Fscan(in, &n, &m, &q)

	adjList := make([][]Edge, n)
	edges := make([][2]int, m)
	for i := 0; i < m; i++ {
		var u, v int
		fmt.Fscan(in, &u, &v)
		u--
		v--
		adjList[u] = append(adjList[u], Edge{u, v, 1, i})
		adjList[v] = append(adjList[v], Edge{v, u, 1, i})
		edges[i] = [2]int{u, v}
	}

	EBCC := NewTwoEdgeConnectedComponents(adjList)
	EBCC.Build()
	tree := _NT(len(EBCC.Group))
	for _, e := range edges { // !缩点成树
		u, v := e[0], e[1]
		id1, id2 := EBCC.CompId[u], EBCC.CompId[v]
		if id1 != id2 { // 桥
			tree.AddEdge(id1, id2, 1)
		}
	}
	tree.Build(0)

	data := make([]E, n)
	for i := range data {
		data[i] = E{max_: -INF, index: i}
	}
	TM := NewTreeMonoid(tree, data, true)
	pqs := make([]*Heap, len(EBCC.Group)) // 每个连通分量内的最大值
	for i := range pqs {
		pqs[i] = NewHeap(func(x, y int) bool { return x > y }, nil)
	}

	for i := 0; i < q; i++ {
		var op int
		fmt.Fscan(in, &op)
		if op == 1 {
			var u, w int
			fmt.Fscan(in, &u, &w)
			u--
			id := EBCC.CompId[u]
			pqs[id].Push(w)
			TM.Set(id, E{pqs[id].Top(), id})
		} else {
			var u, v int
			fmt.Fscan(in, &u, &v)
			u--
			v--
			id1, id2 := EBCC.CompId[u], EBCC.CompId[v]
			res := TM.QueryPath(id1, id2)
			if res.max_ == -INF {
				fmt.Fprintln(out, -1)
			} else {
				fmt.Fprintln(out, res.max_)
				pqs[res.index].Pop()
				cand := -INF
				if pqs[res.index].Len() > 0 {
					cand = pqs[res.index].Top()
				}
				TM.Set(res.index, E{cand, res.index})
			}
		}
	}
}

const INF int = 1e18

// MonoidMaxIndex
type E = struct{ max_, index int }

const IS_COMMUTATIVE = true // 幺半群是否满足交换律
func e() E                  { return E{max_: -INF, index: -1} }
func op(e1, e2 E) E {
	if e1.max_ > e2.max_ {
		return e1
	}
	if e1.max_ < e2.max_ {
		return e2
	}
	return E{e1.max_, min(e1.index, e2.index)}
}

type Edge = struct{ from, to, cost, index int }
type TwoEdgeConnectedComponents struct {
	Tree    [][]Edge // 缩点后各个顶点形成的树
	CompId  []int    // 每个点所属的边双连通分量的编号
	Group   [][]int  // 每个边双连通分量里的点
	g       [][]Edge
	lowLink *LowLink
	k       int
}

func NewTwoEdgeConnectedComponents(g [][]Edge) *TwoEdgeConnectedComponents {
	return &TwoEdgeConnectedComponents{
		g:       g,
		lowLink: NewLowLink(g),
	}
}

type TreeMonoid struct {
	tree     *_T
	n        int
	unit     E
	isVertex bool
	seg      *_ST
	segR     *_ST
}

// 树的路径查询 + 单点修改, 维护的量需要满足幺半群的性质.
//  data: 顶点的值, 或者边的值.(边的编号为两个定点中较深的那个点的编号)
//  isVertex: data是否为顶点的值以及查询的时候是否是顶点权值.
func NewTreeMonoid(tree *_T, data []E, isVertex bool) *TreeMonoid {
	n := len(tree.Tree)
	res := &TreeMonoid{tree: tree, n: n, unit: e(), isVertex: isVertex}
	leaves := make([]E, n)
	if isVertex {
		for v := range leaves {
			leaves[tree.LID[v]] = data[v]
		}
	} else {
		for i := range leaves {
			leaves[i] = res.unit
		}
		for e := 0; e < n-1; e++ {
			v := tree.EidtoV(e)
			leaves[tree.LID[v]] = data[e]
		}
	}
	res.seg = _NewS(leaves, e, op)
	if !IS_COMMUTATIVE {
		res.segR = _NewS(leaves, e, func(e1, e2 E) E { return op(e2, e1) }) // opRev
	}
	return res
}

// 第i个顶点或者第i条边的值修改为e.
func (tm *TreeMonoid) Set(i int, e E) {
	if !tm.isVertex {
		i = tm.tree.EidtoV(i)
	}
	i = tm.tree.LID[i]
	tm.seg.Set(i, e)
	if !IS_COMMUTATIVE {
		tm.segR.Set(i, e)
	}
}

// 第i个顶点或者第i条边的值与delta进行运算.
func (tm *TreeMonoid) Update(i int, delta E) {
	if !tm.isVertex {
		i = tm.tree.EidtoV(i)
	}
	i = tm.tree.LID[i]
	tm.seg.Update(i, delta)
	if !IS_COMMUTATIVE {
		tm.segR.Update(i, delta)
	}
}

// 查询 start 到 target 的路径上的值.(点权/边权 由 isVertex 决定)
func (tm *TreeMonoid) QueryPath(start, target int) E {
	path := tm.tree.GetPathDecomposition(start, target, tm.isVertex)
	val := tm.unit
	for _, ab := range path {
		a, b := ab[0], ab[1]
		var x E
		if a <= b {
			x = tm.seg.Query(a, b+1)
		} else if IS_COMMUTATIVE {
			x = tm.seg.Query(b, a+1)
		} else {
			x = tm.segR.Query(b, a+1)
		}
		val = op(val, x)
	}
	return val
}

// 找到路径上最后一个 x 使得 QueryPath(start,x) 满足check函数.不存在返回-1.
func (tm *TreeMonoid) MaxPath(check func(E) bool, start, target int) int {
	if !tm.isVertex {
		return tm._maxPathEdge(check, start, target)
	}
	if !check(tm.QueryPath(start, start)) {
		return -1
	}
	path := tm.tree.GetPathDecomposition(start, target, tm.isVertex)
	val := tm.unit
	for _, ab := range path {
		a, b := ab[0], ab[1]
		var x E
		if a <= b {
			x = tm.seg.Query(a, b+1)
		} else if IS_COMMUTATIVE {
			x = tm.seg.Query(b, a+1)
		} else {
			x = tm.segR.Query(b, a+1)
		}
		if tmp := op(val, x); check(tmp) {
			val = tmp
			start = tm.tree.idToNode[b]
			continue
		}
		checkTmp := func(x E) bool {
			return check(op(val, x))
		}
		if a <= b {
			i := tm.seg.MaxRight(a, checkTmp)
			if i == a {
				return start
			}
			return tm.tree.idToNode[i-1]
		} else {
			var i int
			if IS_COMMUTATIVE {
				i = tm.seg.MinLeft(a+1, checkTmp)
			} else {
				i = tm.segR.MinLeft(a+1, checkTmp)
			}
			if i == a+1 {
				return start
			}
			return tm.tree.idToNode[i]
		}
	}
	return target
}

func (tm *TreeMonoid) QuerySubtree(root int) E {
	l, r := tm.tree.LID[root], tm.tree.RID[root]
	offset := 1
	if tm.isVertex {
		offset = 0
	}
	return tm.seg.Query(l+offset, r)
}

func (tm *TreeMonoid) _maxPathEdge(check func(E) bool, u, v int) int {
	lca := tm.tree.LCA(u, v)
	path := tm.tree.GetPathDecomposition(u, lca, tm.isVertex)
	val := tm.unit
	// climb
	for _, ab := range path {
		a, b := ab[0], ab[1]
		var x E
		if IS_COMMUTATIVE {
			x = tm.seg.Query(b, a+1)
		} else {
			x = tm.segR.Query(b, a+1)
		}
		if tmp := op(val, x); check(tmp) {
			val = tmp
			u = tm.tree.Parent[tm.tree.idToNode[b]]
			continue
		}
		checkTmp := func(x E) bool {
			return check(op(val, x))
		}
		var i int
		if IS_COMMUTATIVE {
			i = tm.seg.MinLeft(a+1, checkTmp)
		} else {
			i = tm.segR.MinLeft(a+1, checkTmp)
		}
		if i == a+1 {
			return u
		}
		return tm.tree.Parent[tm.tree.idToNode[i]]
	}

	// down
	path = tm.tree.GetPathDecomposition(lca, v, tm.isVertex)
	for _, ab := range path {
		a, b := ab[0], ab[1]
		x := tm.seg.Query(a, b+1)
		if tmp := op(val, x); check(tmp) {
			val = tmp
			u = tm.tree.idToNode[b]
			continue
		}
		checkTmp := func(x E) bool {
			return check(op(val, x))
		}
		i := tm.seg.MaxRight(a, checkTmp)
		if i == a {
			return u
		}
		return tm.tree.idToNode[i-1]
	}
	return v
}

type _T struct {
	Tree                 [][][2]int // (next, weight)
	Edges                [][3]int   // (u, v, w)
	Depth, DepthWeighted []int
	Parent               []int
	LID, RID             []int // 欧拉序[in,out)
	idToNode             []int
	top, heavySon        []int
	timer                int
}

func _NT(n int) *_T {
	tree := make([][][2]int, n)
	lid := make([]int, n)
	rid := make([]int, n)
	idToNode := make([]int, n)
	top := make([]int, n)   // 所处轻/重链的顶点(深度最小),轻链的顶点为自身
	depth := make([]int, n) // 深度
	depthWeighted := make([]int, n)
	parent := make([]int, n)   // 父结点
	heavySon := make([]int, n) // 重儿子
	edges := make([][3]int, 0, n-1)
	for i := range parent {
		parent[i] = -1
	}

	return &_T{
		Tree:          tree,
		Depth:         depth,
		DepthWeighted: depthWeighted,
		Parent:        parent,
		LID:           lid,
		RID:           rid,
		idToNode:      idToNode,
		top:           top,
		heavySon:      heavySon,
		Edges:         edges,
	}
}

// 添加无向边 u-v, 边权为w.
func (tree *_T) AddEdge(u, v, w int) {
	tree.Tree[u] = append(tree.Tree[u], [2]int{v, w})
	tree.Tree[v] = append(tree.Tree[v], [2]int{u, w})
	tree.Edges = append(tree.Edges, [3]int{u, v, w})
}

// 添加有向边 u->v, 边权为w.
func (tree *_T) AddDirectedEdge(u, v, w int) {
	tree.Tree[u] = append(tree.Tree[u], [2]int{v, w})
	tree.Edges = append(tree.Edges, [3]int{u, v, w})
}

// root:0-based
//  当root设为-1时,会从0开始遍历未访问过的连通分量
func (tree *_T) Build(root int) {
	if root != -1 {
		tree.build(root, -1, 0, 0)
		tree.markTop(root, root)
	} else {
		for i := 0; i < len(tree.Tree); i++ {
			if tree.Parent[i] == -1 {
				tree.build(i, -1, 0, 0)
				tree.markTop(i, i)
			}
		}
	}
}

// 返回 root 的欧拉序区间, 左闭右开, 0-indexed.
func (tree *_T) Id(root int) (int, int) {
	return tree.LID[root], tree.RID[root]
}

// 返回边 u-v 对应的 欧拉序起点编号, 0-indexed.
func (tree *_T) Eid(u, v int) int {
	if tree.LID[u] > tree.LID[v] {
		return tree.LID[u]
	}
	return tree.LID[v]
}

// 较深的那个点作为边的编号.
func (tree *_T) EidtoV(eid int) int {
	e := tree.Edges[eid]
	u, v := e[0], e[1]
	if tree.Parent[u] == v {
		return u
	}
	return v
}

func (tree *_T) LCA(u, v int) int {
	for {
		if tree.LID[u] > tree.LID[v] {
			u, v = v, u
		}
		if tree.top[u] == tree.top[v] {
			return u
		}
		v = tree.Parent[tree.top[v]]
	}
}

func (tree *_T) RootedLCA(u, v int, root int) int {
	return tree.LCA(u, v) ^ tree.LCA(u, root) ^ tree.LCA(v, root)
}

func (tree *_T) Dist(u, v int, weighted bool) int {
	if weighted {
		return tree.DepthWeighted[u] + tree.DepthWeighted[v] - 2*tree.DepthWeighted[tree.LCA(u, v)]
	}
	return tree.Depth[u] + tree.Depth[v] - 2*tree.Depth[tree.LCA(u, v)]
}

// k: 0-based
//  如果不存在第k个祖先,返回-1
func (tree *_T) KthAncestor(root, k int) int {
	if k > tree.Depth[root] {
		return -1
	}
	for {
		u := tree.top[root]
		if tree.LID[root]-k >= tree.LID[u] {
			return tree.idToNode[tree.LID[root]-k]
		}
		k -= tree.LID[root] - tree.LID[u] + 1
		root = tree.Parent[u]
	}
}

// 从 from 节点跳向 to 节点,跳过 step 个节点(0-indexed)
//  返回跳到的节点,如果不存在这样的节点,返回-1
func (tree *_T) Jump(from, to, step int) int {
	if step == 1 {
		if from == to {
			return -1
		}
		if tree.IsInSubtree(to, from) {
			return tree.KthAncestor(to, tree.Depth[to]-tree.Depth[from]-1)
		}
		return tree.Parent[from]
	}
	c := tree.LCA(from, to)
	dac := tree.Depth[from] - tree.Depth[c]
	dbc := tree.Depth[to] - tree.Depth[c]
	if step > dac+dbc {
		return -1
	}
	if step <= dac {
		return tree.KthAncestor(from, step)
	}
	return tree.KthAncestor(to, dac+dbc-step)
}

func (tree *_T) CollectChild(root int) []int {
	res := []int{}
	for _, e := range tree.Tree[root] {
		next := e[0]
		if next != tree.Parent[root] {
			res = append(res, next)
		}
	}
	return res
}

// 返回沿着`路径顺序`的 [起点,终点] 的 欧拉序 `左闭右闭` 数组.
//  !eg:[[2 0] [4 4]] 沿着路径顺序但不一定沿着欧拉序.
func (tree *_T) GetPathDecomposition(u, v int, vertex bool) [][2]int {
	up, down := [][2]int{}, [][2]int{}
	for {
		if tree.top[u] == tree.top[v] {
			break
		}
		if tree.LID[u] < tree.LID[v] {
			down = append(down, [2]int{tree.LID[tree.top[v]], tree.LID[v]})
			v = tree.Parent[tree.top[v]]
		} else {
			up = append(up, [2]int{tree.LID[u], tree.LID[tree.top[u]]})
			u = tree.Parent[tree.top[u]]
		}
	}
	edgeInt := 1
	if vertex {
		edgeInt = 0
	}
	if tree.LID[u] < tree.LID[v] {
		down = append(down, [2]int{tree.LID[u] + edgeInt, tree.LID[v]})
	} else if tree.LID[v]+edgeInt <= tree.LID[u] {
		up = append(up, [2]int{tree.LID[u], tree.LID[v] + edgeInt})
	}
	for i := 0; i < len(down)/2; i++ {
		down[i], down[len(down)-1-i] = down[len(down)-1-i], down[i]
	}
	return append(up, down...)
}

func (tree *_T) GetPath(u, v int) []int {
	res := []int{}
	composition := tree.GetPathDecomposition(u, v, true)
	for _, e := range composition {
		a, b := e[0], e[1]
		if a <= b {
			for i := a; i <= b; i++ {
				res = append(res, tree.idToNode[i])
			}
		} else {
			for i := a; i >= b; i-- {
				res = append(res, tree.idToNode[i])
			}
		}
	}
	return res
}

// 以root为根时,结点v的子树大小.
func (tree *_T) SubtreeSize(v, root int) int {
	if root == -1 {
		return tree.RID[v] - tree.LID[v]
	}
	if v == root {
		return len(tree.Tree)
	}
	x := tree.Jump(v, root, 1)
	if tree.IsInSubtree(v, x) {
		return tree.RID[v] - tree.LID[v]
	}
	return len(tree.Tree) - tree.RID[x] + tree.LID[x]
}

// child 是否在 root 的子树中 (child和root不能相等)
func (tree *_T) IsInSubtree(child, root int) bool {
	return tree.LID[root] <= tree.LID[child] && tree.LID[child] < tree.RID[root]
}

func (tree *_T) ELID(u int) int {
	return 2*tree.LID[u] - tree.Depth[u]
}

func (tree *_T) ERID(u int) int {
	return 2*tree.RID[u] - tree.Depth[u] - 1
}

func (tree *_T) build(cur, pre, dep, dist int) int {
	subSize, heavySize, heavySon := 1, 0, -1
	for _, e := range tree.Tree[cur] {
		next, weight := e[0], e[1]
		if next != pre {
			nextSize := tree.build(next, cur, dep+1, dist+weight)
			subSize += nextSize
			if nextSize > heavySize {
				heavySize, heavySon = nextSize, next
			}
		}
	}
	tree.Depth[cur] = dep
	tree.DepthWeighted[cur] = dist
	tree.heavySon[cur] = heavySon
	tree.Parent[cur] = pre
	return subSize
}

func (tree *_T) markTop(cur, top int) {
	tree.top[cur] = top
	tree.LID[cur] = tree.timer
	tree.idToNode[tree.timer] = cur
	tree.timer++
	if tree.heavySon[cur] != -1 {
		tree.markTop(tree.heavySon[cur], top)
		for _, e := range tree.Tree[cur] {
			next := e[0]
			if next != tree.heavySon[cur] && next != tree.Parent[cur] {
				tree.markTop(next, next)
			}
		}
	}
	tree.RID[cur] = tree.timer
}

//
//
type _ST struct {
	n, size int
	seg     []E

	e    func() E
	op   func(E, E) E
	unit E
}

func _NewS(leaves []E, e func() E, op func(E, E) E) *_ST {
	res := &_ST{e: e, op: op, unit: e()}
	n := len(leaves)
	size := 1
	for size < n {
		size <<= 1
	}
	seg := make([]E, size<<1)
	for i := range seg {
		seg[i] = res.e()
	}
	for i := 0; i < n; i++ {
		seg[i+size] = leaves[i]
	}
	for i := size - 1; i > 0; i-- {
		seg[i] = op(seg[i<<1], seg[i<<1|1])
	}
	res.n = n
	res.size = size
	res.seg = seg
	return res
}

func (st *_ST) Get(index int) E {
	if index < 0 || index >= st.n {
		return st.unit
	}
	return st.seg[index+st.size]
}

func (st *_ST) Set(index int, value E) {
	if index < 0 || index >= st.n {
		return
	}
	index += st.size
	st.seg[index] = value
	for index >>= 1; index > 0; index >>= 1 {
		st.seg[index] = st.op(st.seg[index<<1], st.seg[index<<1|1])
	}
}

func (st *_ST) Update(index int, value E) {
	if index < 0 || index >= st.n {
		return
	}
	index += st.size
	st.seg[index] = st.op(st.seg[index], value)
	for index >>= 1; index > 0; index >>= 1 {
		st.seg[index] = st.op(st.seg[index<<1], st.seg[index<<1|1])
	}
}

// [start, end)
func (st *_ST) Query(start, end int) E {
	if start < 0 {
		start = 0
	}
	if end > st.n {
		end = st.n
	}
	if start >= end {
		return st.unit
	}
	leftRes, rightRes := st.unit, st.unit
	start += st.size
	end += st.size
	for start < end {
		if start&1 == 1 {
			leftRes = st.op(leftRes, st.seg[start])
			start++
		}
		if end&1 == 1 {
			end--
			rightRes = st.op(st.seg[end], rightRes)
		}
		start >>= 1
		end >>= 1
	}
	return st.op(leftRes, rightRes)
}

func (st *_ST) QueryAll() E { return st.seg[1] }

// 二分查询最大的 right 使得切片 [left:right] 内的值满足 predicate
func (st *_ST) MaxRight(left int, predicate func(E) bool) int {
	if left == st.n {
		return st.n
	}
	left += st.size
	res := st.unit
	for {
		for left&1 == 0 {
			left >>= 1
		}
		if !predicate(st.op(res, st.seg[left])) {
			for left < st.size {
				left <<= 1
				if predicate(st.op(res, st.seg[left])) {
					res = st.op(res, st.seg[left])
					left++
				}
			}
			return left - st.size
		}
		res = st.op(res, st.seg[left])
		left++
		if (left & -left) == left {
			break
		}
	}
	return st.n
}

// 二分查询最小的 left 使得切片 [left:right] 内的值满足 predicate
func (st *_ST) MinLeft(right int, predicate func(E) bool) int {
	if right == 0 {
		return 0
	}
	right += st.size
	res := st.unit
	for {
		right--
		for right > 1 && right&1 == 1 {
			right >>= 1
		}
		if !predicate(st.op(st.seg[right], res)) {
			for right < st.size {
				right = right<<1 | 1
				if predicate(st.op(st.seg[right], res)) {
					res = st.op(st.seg[right], res)
					right--
				}
			}
			return right + 1 - st.size
		}
		res = st.op(st.seg[right], res)
		if right&-right == right {
			break
		}
	}
	return 0
}

func (tec *TwoEdgeConnectedComponents) Build() {
	tec.lowLink.Build()
	tec.CompId = make([]int, len(tec.g))
	for i := 0; i < len(tec.g); i++ {
		tec.CompId[i] = -1
	}
	for i := 0; i < len(tec.g); i++ {
		if tec.CompId[i] == -1 {
			tec.dfs(i, -1)
		}
	}
	tec.Group = make([][]int, tec.k)
	for i := 0; i < len(tec.g); i++ {
		tec.Group[tec.CompId[i]] = append(tec.Group[tec.CompId[i]], i)
	}
	tec.Tree = make([][]Edge, tec.k)
	for _, e := range tec.lowLink.Bridge {
		tec.Tree[tec.CompId[e.from]] = append(tec.Tree[tec.CompId[e.from]], Edge{tec.CompId[e.from], tec.CompId[e.to], e.cost, e.index})
		tec.Tree[tec.CompId[e.to]] = append(tec.Tree[tec.CompId[e.to]], Edge{tec.CompId[e.to], tec.CompId[e.from], e.cost, e.index})
	}
}

// 每个点所属的边双连通分量的编号.
func (tec *TwoEdgeConnectedComponents) Get(k int) int { return tec.CompId[k] }

func (tec *TwoEdgeConnectedComponents) dfs(idx, par int) {
	if par >= 0 && tec.lowLink.ord[par] >= tec.lowLink.low[idx] {
		tec.CompId[idx] = tec.CompId[par]
	} else {
		tec.CompId[idx] = tec.k
		tec.k++
	}
	for _, e := range tec.g[idx] {
		if tec.CompId[e.to] == -1 {
			tec.dfs(e.to, idx)
		}
	}
}

type LowLink struct {
	Articulation []int  // 関節点
	Bridge       []Edge // 橋
	g            [][]Edge
	ord, low     []int
	used         []bool
}

func NewLowLink(g [][]Edge) *LowLink {
	return &LowLink{g: g}
}

func (ll *LowLink) Build() {
	ll.used = make([]bool, len(ll.g))
	ll.ord = make([]int, len(ll.g))
	ll.low = make([]int, len(ll.g))
	k := 0
	for i := 0; i < len(ll.g); i++ {
		if !ll.used[i] {
			k = ll.dfs(i, k, -1)
		}
	}
}

func (ll *LowLink) dfs(idx, k, par int) int {
	ll.used[idx] = true
	ll.ord[idx] = k
	k++
	ll.low[idx] = ll.ord[idx]
	isArticulation := false
	beet := false
	cnt := 0
	for _, e := range ll.g[idx] {
		if e.to == par {
			tmp := beet
			beet = true
			if !tmp {
				continue
			}
		}
		if !ll.used[e.to] {
			cnt++
			k = ll.dfs(e.to, k, idx)
			ll.low[idx] = min(ll.low[idx], ll.low[e.to])
			if par >= 0 && ll.low[e.to] >= ll.ord[idx] {
				isArticulation = true
			}
			if ll.ord[idx] < ll.low[e.to] {
				ll.Bridge = append(ll.Bridge, e)
			}
		} else {
			ll.low[idx] = min(ll.low[idx], ll.ord[e.to])
		}
	}

	if par == -1 && cnt > 1 {
		isArticulation = true
	}
	if isArticulation {
		ll.Articulation = append(ll.Articulation, idx)
	}
	return k
}

func min(a, b int) int {
	if a < b {
		return a
	}
	return b
}

type H = int

func NewHeap(less func(a, b H) bool, nums []H) *Heap {
	nums = append(nums[:0:0], nums...)
	heap := &Heap{less: less, data: nums}
	heap.heapify()
	return heap
}

type Heap struct {
	data []H
	less func(a, b H) bool
}

func (h *Heap) Push(value H) {
	h.data = append(h.data, value)
	h.pushUp(h.Len() - 1)
}

func (h *Heap) Pop() (value H) {
	if h.Len() == 0 {
		panic("heap is empty")
	}

	value = h.data[0]
	h.data[0] = h.data[h.Len()-1]
	h.data = h.data[:h.Len()-1]
	h.pushDown(0)
	return
}

func (h *Heap) Top() (value H) {
	if h.Len() == 0 {
		panic("heap is empty")
	}
	value = h.data[0]
	return
}

func (h *Heap) Len() int { return len(h.data) }

func (h *Heap) heapify() {
	n := h.Len()
	for i := (n >> 1) - 1; i > -1; i-- {
		h.pushDown(i)
	}
}

func (h *Heap) pushUp(root int) {
	for parent := (root - 1) >> 1; parent >= 0 && h.less(h.data[root], h.data[parent]); parent = (root - 1) >> 1 {
		h.data[root], h.data[parent] = h.data[parent], h.data[root]
		root = parent
	}
}

func (h *Heap) pushDown(root int) {
	n := h.Len()
	for left := (root<<1 + 1); left < n; left = (root<<1 + 1) {
		right := left + 1
		minIndex := root

		if h.less(h.data[left], h.data[minIndex]) {
			minIndex = left
		}

		if right < n && h.less(h.data[right], h.data[minIndex]) {
			minIndex = right
		}

		if minIndex == root {
			return
		}

		h.data[root], h.data[minIndex] = h.data[minIndex], h.data[root]
		root = minIndex
	}
}
0