結果
| 問題 |
No.2362 Inversion Number of Mod of Linear
|
| コンテスト | |
| ユーザー |
|
| 提出日時 | 2023-06-23 21:45:39 |
| 言語 | C++14 (gcc 13.3.0 + boost 1.87.0) |
| 結果 |
AC
|
| 実行時間 | 127 ms / 2,000 ms |
| コード長 | 4,774 bytes |
| コンパイル時間 | 1,109 ms |
| コンパイル使用メモリ | 107,632 KB |
| 実行使用メモリ | 6,944 KB |
| 最終ジャッジ日時 | 2024-07-01 01:20:29 |
| 合計ジャッジ時間 | 2,743 ms |
|
ジャッジサーバーID (参考情報) |
judge3 / judge4 |
(要ログイン)
| ファイルパターン | 結果 |
|---|---|
| sample | AC * 2 |
| other | AC * 8 |
ソースコード
#include <cassert>
#include <cmath>
#include <cstdint>
#include <cstdio>
#include <cstdlib>
#include <cstring>
#include <algorithm>
#include <bitset>
#include <complex>
#include <deque>
#include <functional>
#include <iostream>
#include <limits>
#include <map>
#include <numeric>
#include <queue>
#include <set>
#include <sstream>
#include <string>
#include <unordered_map>
#include <unordered_set>
#include <utility>
#include <vector>
using namespace std;
// using Int = long long;
template <class T1, class T2> ostream &operator<<(ostream &os, const pair<T1, T2> &a) { return os << "(" << a.first << ", " << a.second << ")"; };
template <class T> ostream &operator<<(ostream &os, const vector<T> &as) { const int sz = as.size(); os << "["; for (int i = 0; i < sz; ++i) { if (i >= 256) { os << ", ..."; break; } if (i > 0) { os << ", "; } os << as[i]; } return os << "]"; }
template <class T> void pv(T a, T b) { for (T i = a; i != b; ++i) cerr << *i << " "; cerr << endl; }
template <class T> bool chmin(T &t, const T &f) { if (t > f) { t = f; return true; } return false; }
template <class T> bool chmax(T &t, const T &f) { if (t < f) { t = f; return true; } return false; }
#ifndef LIBRA_OTHER_INT128_H_
#define LIBRA_OTHER_INT128_H_
#include <stdio.h>
#include <iostream>
constexpr unsigned __int128 toUInt128(const char *s) {
unsigned __int128 x = 0;
for (; *s; ++s) x = x * 10 + (*s - '0');
return x;
}
constexpr __int128 toInt128(const char *s) {
if (*s == '-') return -toInt128(s + 1);
__int128 x = 0;
for (; *s; ++s) x = x * 10 + (*s - '0');
return x;
}
unsigned __int128 inUInt128() {
static char buf[41];
scanf("%s", buf);
return toUInt128(buf);
}
__int128 inInt128() {
static char buf[41];
scanf("%s", buf);
return toInt128(buf);
}
void out(unsigned __int128 x) {
static char buf[41];
int len = 0;
do { buf[len++] = '0' + static_cast<int>(x % 10); } while (x /= 10);
for (int i = len; --i >= 0; ) putchar(buf[i]);
}
void out(__int128 x) {
if (x < 0) {
putchar('-');
out(-static_cast<unsigned __int128>(x));
} else {
out(static_cast<unsigned __int128>(x));
}
}
std::ostream &operator<<(std::ostream &os, unsigned __int128 x) {
static char buf[41];
int len = 0;
do { buf[len++] = '0' + static_cast<int>(x % 10); } while (x /= 10);
for (int i = len; --i >= 0; ) os << buf[i];
return os;
}
std::ostream &operator<<(std::ostream &os, __int128 x) {
if (x < 0) {
os << '-' << -static_cast<unsigned __int128>(x);
} else {
os << static_cast<unsigned __int128>(x);
}
return os;
}
#endif // LIBRA_OTHER_INT128_H_
// y^f(0) x y^(f(1)-f(0)) x y^(f(2)-f(1)) x ... x y^(f(n)-f(n-1))
// where f(i) = floor((a i + b) / m)
// S: (unsigned or signed) integer
// (a n + b) and (m + a) does not overflow
// T: monoid with pow
// e: identity
template <class S, class T> T pathUnder(S m, S a, S b, S n, T e, T x, T y) {
assert(m >= 1); assert(a >= 0); assert(b >= 0); assert(n >= 0);
S c = (a * n + b) / m;
T pre = e, suf = e;
for (; ; ) {
const S p = a / m; a %= m; x = x * y.pow(p);
const S q = b / m; b %= m; pre = pre * y.pow(q);
c -= (p * n + q);
if (c == 0) return pre * x.pow(n) * suf;
const S d = (m * c - b - 1) / a + 1;
suf = y * x.pow(n - d) * suf;
b = m - b - 1 + a; swap(m, a); n = c - 1; c = d; swap(x, y);
}
}
using Int = __int128;
struct Data {
Int val, sz, sum0, sum1;
Data() : val(0), sz(0), sum0(0), sum1(0) {}
friend Data operator*(const Data &a, const Data &b) {
Data c;
c.val = a.val + b.val;
c.sz = a.sz + b.sz;
c.sum0 = a.sum0 + b.sz * a.val + b.sum0;
c.sum1 = a.sum1 + b.sz * a.sz * a.val + (b.sz * (b.sz - 1) / 2) * a.val + a.sz * b.sum0 + b.sum1;
return c;
}
Data pow(Int e) const {
for (Data a = *this, b; ; a = a * a) {
if (e & 1) b = b * a;
if (!(e >>= 1)) return b;
}
}
};
// \sum[0<=i<n] i^k ((ai+b) mod m)
Data solve(Int n, Int m, Int a, Int b) {
Data ini, x, y;
ini.val = b;
x.val = a;
x.sz = 1;
y.val = -m;
const Data res = pathUnder(m, a, b, n, Data(), x, y);
return ini * res;
}
int main() {
for (int numCases; ~scanf("%d", &numCases); ) { for (int caseId = 1; caseId <= numCases; ++caseId) {
const Int N = inInt128();
const Int M = inInt128();
const Int X = inInt128();
const Int Y = inInt128();
Int ans = 0;
// 4, 2, 0, -2, 4
{
const Data res = solve(N, M, X, Y);
ans += (N - 1) * res.sum0;
ans -= 2 * res.sum1;
}
// 4, 3, 2, 1, 0
{
const Data res = solve(N, M, X, X);
ans += (N - 1) * res.sum0;
ans -= res.sum1;
}
assert(ans % M == 0);
ans /= M;
out(ans);
puts("");
}
#ifndef LOCAL
break;
#endif
}
return 0;
}