結果

問題 No.2362 Inversion Number of Mod of Linear
ユーザー NyaanNyaanNyaanNyaan
提出日時 2023-06-23 23:01:45
言語 C++17
(gcc 12.3.0 + boost 1.83.0)
結果
TLE  
実行時間 -
コード長 21,604 bytes
コンパイル時間 2,858 ms
コンパイル使用メモリ 260,524 KB
実行使用メモリ 13,756 KB
最終ジャッジ日時 2024-07-01 02:48:05
合計ジャッジ時間 6,324 ms
ジャッジサーバーID
(参考情報)
judge3 / judge5
このコードへのチャレンジ
(要ログイン)

テストケース

テストケース表示
入力 結果 実行時間
実行使用メモリ
testcase_00 AC 54 ms
13,756 KB
testcase_01 AC 53 ms
6,940 KB
testcase_02 TLE -
testcase_03 -- -
testcase_04 -- -
testcase_05 -- -
testcase_06 -- -
testcase_07 -- -
testcase_08 -- -
testcase_09 -- -
権限があれば一括ダウンロードができます

ソースコード

diff #

/**
 * date   : 2023-06-23 23:01:36
 * author : Nyaan
 */

#define NDEBUG

using namespace std;

// intrinstic
#include <immintrin.h>

#include <algorithm>
#include <array>
#include <bitset>
#include <cassert>
#include <cctype>
#include <cfenv>
#include <cfloat>
#include <chrono>
#include <cinttypes>
#include <climits>
#include <cmath>
#include <complex>
#include <cstdarg>
#include <cstddef>
#include <cstdint>
#include <cstdio>
#include <cstdlib>
#include <cstring>
#include <deque>
#include <fstream>
#include <functional>
#include <initializer_list>
#include <iomanip>
#include <ios>
#include <iostream>
#include <istream>
#include <iterator>
#include <limits>
#include <list>
#include <map>
#include <memory>
#include <new>
#include <numeric>
#include <ostream>
#include <queue>
#include <random>
#include <set>
#include <sstream>
#include <stack>
#include <streambuf>
#include <string>
#include <tuple>
#include <type_traits>
#include <typeinfo>
#include <unordered_map>
#include <unordered_set>
#include <utility>
#include <vector>

// utility

namespace Nyaan {
using ll = long long;
using i64 = long long;
using u64 = unsigned long long;
using i128 = __int128_t;
using u128 = __uint128_t;

template <typename T>
using V = vector<T>;
template <typename T>
using VV = vector<vector<T>>;
using vi = vector<int>;
using vl = vector<long long>;
using vd = V<double>;
using vs = V<string>;
using vvi = vector<vector<int>>;
using vvl = vector<vector<long long>>;

template <typename T, typename U>
struct P : pair<T, U> {
  template <typename... Args>
  P(Args... args) : pair<T, U>(args...) {}

  using pair<T, U>::first;
  using pair<T, U>::second;

  P &operator+=(const P &r) {
    first += r.first;
    second += r.second;
    return *this;
  }
  P &operator-=(const P &r) {
    first -= r.first;
    second -= r.second;
    return *this;
  }
  P &operator*=(const P &r) {
    first *= r.first;
    second *= r.second;
    return *this;
  }
  template <typename S>
  P &operator*=(const S &r) {
    first *= r, second *= r;
    return *this;
  }
  P operator+(const P &r) const { return P(*this) += r; }
  P operator-(const P &r) const { return P(*this) -= r; }
  P operator*(const P &r) const { return P(*this) *= r; }
  template <typename S>
  P operator*(const S &r) const {
    return P(*this) *= r;
  }
  P operator-() const { return P{-first, -second}; }
};

using pl = P<ll, ll>;
using pi = P<int, int>;
using vp = V<pl>;

constexpr int inf = 1001001001;
constexpr long long infLL = 4004004004004004004LL;

template <typename T>
int sz(const T &t) {
  return t.size();
}

template <typename T, typename U>
inline bool amin(T &x, U y) {
  return (y < x) ? (x = y, true) : false;
}
template <typename T, typename U>
inline bool amax(T &x, U y) {
  return (x < y) ? (x = y, true) : false;
}

template <typename T>
inline T Max(const vector<T> &v) {
  return *max_element(begin(v), end(v));
}
template <typename T>
inline T Min(const vector<T> &v) {
  return *min_element(begin(v), end(v));
}
template <typename T>
inline long long Sum(const vector<T> &v) {
  return accumulate(begin(v), end(v), 0LL);
}

template <typename T>
int lb(const vector<T> &v, const T &a) {
  return lower_bound(begin(v), end(v), a) - begin(v);
}
template <typename T>
int ub(const vector<T> &v, const T &a) {
  return upper_bound(begin(v), end(v), a) - begin(v);
}

constexpr long long TEN(int n) {
  long long ret = 1, x = 10;
  for (; n; x *= x, n >>= 1) ret *= (n & 1 ? x : 1);
  return ret;
}

template <typename T, typename U>
pair<T, U> mkp(const T &t, const U &u) {
  return make_pair(t, u);
}

template <typename T>
vector<T> mkrui(const vector<T> &v, bool rev = false) {
  vector<T> ret(v.size() + 1);
  if (rev) {
    for (int i = int(v.size()) - 1; i >= 0; i--) ret[i] = v[i] + ret[i + 1];
  } else {
    for (int i = 0; i < int(v.size()); i++) ret[i + 1] = ret[i] + v[i];
  }
  return ret;
};

template <typename T>
vector<T> mkuni(const vector<T> &v) {
  vector<T> ret(v);
  sort(ret.begin(), ret.end());
  ret.erase(unique(ret.begin(), ret.end()), ret.end());
  return ret;
}

template <typename F>
vector<int> mkord(int N, F f) {
  vector<int> ord(N);
  iota(begin(ord), end(ord), 0);
  sort(begin(ord), end(ord), f);
  return ord;
}

template <typename T>
vector<int> mkinv(vector<T> &v) {
  int max_val = *max_element(begin(v), end(v));
  vector<int> inv(max_val + 1, -1);
  for (int i = 0; i < (int)v.size(); i++) inv[v[i]] = i;
  return inv;
}

vector<int> mkiota(int n) {
  vector<int> ret(n);
  iota(begin(ret), end(ret), 0);
  return ret;
}

template <typename T>
T mkrev(const T &v) {
  T w{v};
  reverse(begin(w), end(w));
  return w;
}

template <typename T>
bool nxp(vector<T> &v) {
  return next_permutation(begin(v), end(v));
}

// i 要素目 : [0, a[i])
vector<vector<int>> product(const vector<int> &a) {
  vector<vector<int>> ret;
  vector<int> v;
  auto dfs = [&](auto rc, int i) -> void {
    if (i == (int)a.size()) {
      ret.push_back(v);
      return;
    }
    for (int j = 0; j < a[i]; j++) v.push_back(j), rc(rc, i + 1), v.pop_back();
  };
  dfs(dfs, 0);
  return ret;
}

template <typename T>
using minpq = priority_queue<T, vector<T>, greater<T>>;

}  // namespace Nyaan


// bit operation

namespace Nyaan {
__attribute__((target("popcnt"))) inline int popcnt(const u64 &a) {
  return _mm_popcnt_u64(a);
}
inline int lsb(const u64 &a) { return a ? __builtin_ctzll(a) : 64; }
inline int ctz(const u64 &a) { return a ? __builtin_ctzll(a) : 64; }
inline int msb(const u64 &a) { return a ? 63 - __builtin_clzll(a) : -1; }
template <typename T>
inline int gbit(const T &a, int i) {
  return (a >> i) & 1;
}
template <typename T>
inline void sbit(T &a, int i, bool b) {
  if (gbit(a, i) != b) a ^= T(1) << i;
}
constexpr long long PW(int n) { return 1LL << n; }
constexpr long long MSK(int n) { return (1LL << n) - 1; }
}  // namespace Nyaan


// inout

namespace Nyaan {

template <typename T, typename U>
ostream &operator<<(ostream &os, const pair<T, U> &p) {
  os << p.first << " " << p.second;
  return os;
}
template <typename T, typename U>
istream &operator>>(istream &is, pair<T, U> &p) {
  is >> p.first >> p.second;
  return is;
}

template <typename T>
ostream &operator<<(ostream &os, const vector<T> &v) {
  int s = (int)v.size();
  for (int i = 0; i < s; i++) os << (i ? " " : "") << v[i];
  return os;
}
template <typename T>
istream &operator>>(istream &is, vector<T> &v) {
  for (auto &x : v) is >> x;
  return is;
}

istream &operator>>(istream &is, __int128_t &x) {
  string S;
  is >> S;
  x = 0;
  int flag = 0;
  for (auto &c : S) {
    if (c == '-') {
      flag = true;
      continue;
    }
    x *= 10;
    x += c - '0';
  }
  if (flag) x = -x;
  return is;
}

istream &operator>>(istream &is, __uint128_t &x) {
  string S;
  is >> S;
  x = 0;
  for (auto &c : S) {
    x *= 10;
    x += c - '0';
  }
  return is;
}

ostream &operator<<(ostream &os, __int128_t x) {
  if (x == 0) return os << 0;
  if (x < 0) os << '-', x = -x;
  string S;
  while (x) S.push_back('0' + x % 10), x /= 10;
  reverse(begin(S), end(S));
  return os << S;
}
ostream &operator<<(ostream &os, __uint128_t x) {
  if (x == 0) return os << 0;
  string S;
  while (x) S.push_back('0' + x % 10), x /= 10;
  reverse(begin(S), end(S));
  return os << S;
}

void in() {}
template <typename T, class... U>
void in(T &t, U &...u) {
  cin >> t;
  in(u...);
}

void out() { cout << "\n"; }
template <typename T, class... U, char sep = ' '>
void out(const T &t, const U &...u) {
  cout << t;
  if (sizeof...(u)) cout << sep;
  out(u...);
}

struct IoSetupNya {
  IoSetupNya() {
    cin.tie(nullptr);
    ios::sync_with_stdio(false);
    cout << fixed << setprecision(15);
    cerr << fixed << setprecision(7);
  }
} iosetupnya;

}  // namespace Nyaan


// debug


#ifdef NyaanDebug
#define trc(...) (void(0))
#else
#define trc(...) (void(0))
#endif

#ifdef NyaanLocal
#define trc2(...) (void(0))
#else
#define trc2(...) (void(0))
#endif


// macro

#define each(x, v) for (auto&& x : v)
#define each2(x, y, v) for (auto&& [x, y] : v)
#define all(v) (v).begin(), (v).end()
#define rep(i, N) for (long long i = 0; i < (long long)(N); i++)
#define repr(i, N) for (long long i = (long long)(N)-1; i >= 0; i--)
#define rep1(i, N) for (long long i = 1; i <= (long long)(N); i++)
#define repr1(i, N) for (long long i = (N); (long long)(i) > 0; i--)
#define reg(i, a, b) for (long long i = (a); i < (b); i++)
#define regr(i, a, b) for (long long i = (b)-1; i >= (a); i--)
#define fi first
#define se second
#define ini(...)   \
  int __VA_ARGS__; \
  in(__VA_ARGS__)
#define inl(...)         \
  long long __VA_ARGS__; \
  in(__VA_ARGS__)
#define ins(...)      \
  string __VA_ARGS__; \
  in(__VA_ARGS__)
#define in2(s, t)                           \
  for (int i = 0; i < (int)s.size(); i++) { \
    in(s[i], t[i]);                         \
  }
#define in3(s, t, u)                        \
  for (int i = 0; i < (int)s.size(); i++) { \
    in(s[i], t[i], u[i]);                   \
  }
#define in4(s, t, u, v)                     \
  for (int i = 0; i < (int)s.size(); i++) { \
    in(s[i], t[i], u[i], v[i]);             \
  }
#define die(...)             \
  do {                       \
    Nyaan::out(__VA_ARGS__); \
    return;                  \
  } while (0)


namespace Nyaan {
void solve();
}
int main() { Nyaan::solve(); }


//








#ifdef _MSC_VER
#include <intrin.h>
#endif

namespace atcoder {

namespace internal {

// @param m `1 <= m`
// @return x mod m
constexpr long long safe_mod(long long x, long long m) {
    x %= m;
    if (x < 0) x += m;
    return x;
}

// Fast modular multiplication by barrett reduction
// Reference: https://en.wikipedia.org/wiki/Barrett_reduction
// NOTE: reconsider after Ice Lake
struct barrett {
    unsigned int _m;
    unsigned long long im;

    // @param m `1 <= m < 2^31`
    barrett(unsigned int m) : _m(m), im((unsigned long long)(-1) / m + 1) {}

    // @return m
    unsigned int umod() const { return _m; }

    // @param a `0 <= a < m`
    // @param b `0 <= b < m`
    // @return `a * b % m`
    unsigned int mul(unsigned int a, unsigned int b) const {
        // [1] m = 1
        // a = b = im = 0, so okay

        // [2] m >= 2
        // im = ceil(2^64 / m)
        // -> im * m = 2^64 + r (0 <= r < m)
        // let z = a*b = c*m + d (0 <= c, d < m)
        // a*b * im = (c*m + d) * im = c*(im*m) + d*im = c*2^64 + c*r + d*im
        // c*r + d*im < m * m + m * im < m * m + 2^64 + m <= 2^64 + m * (m + 1) < 2^64 * 2
        // ((ab * im) >> 64) == c or c + 1
        unsigned long long z = a;
        z *= b;
#ifdef _MSC_VER
        unsigned long long x;
        _umul128(z, im, &x);
#else
        unsigned long long x =
            (unsigned long long)(((unsigned __int128)(z)*im) >> 64);
#endif
        unsigned int v = (unsigned int)(z - x * _m);
        if (_m <= v) v += _m;
        return v;
    }
};

// @param n `0 <= n`
// @param m `1 <= m`
// @return `(x ** n) % m`
constexpr long long pow_mod_constexpr(long long x, long long n, int m) {
    if (m == 1) return 0;
    unsigned int _m = (unsigned int)(m);
    unsigned long long r = 1;
    unsigned long long y = safe_mod(x, m);
    while (n) {
        if (n & 1) r = (r * y) % _m;
        y = (y * y) % _m;
        n >>= 1;
    }
    return r;
}

// Reference:
// M. Forisek and J. Jancina,
// Fast Primality Testing for Integers That Fit into a Machine Word
// @param n `0 <= n`
constexpr bool is_prime_constexpr(int n) {
    if (n <= 1) return false;
    if (n == 2 || n == 7 || n == 61) return true;
    if (n % 2 == 0) return false;
    long long d = n - 1;
    while (d % 2 == 0) d /= 2;
    constexpr long long bases[3] = {2, 7, 61};
    for (long long a : bases) {
        long long t = d;
        long long y = pow_mod_constexpr(a, t, n);
        while (t != n - 1 && y != 1 && y != n - 1) {
            y = y * y % n;
            t <<= 1;
        }
        if (y != n - 1 && t % 2 == 0) {
            return false;
        }
    }
    return true;
}
template <int n> constexpr bool is_prime = is_prime_constexpr(n);

// @param b `1 <= b`
// @return pair(g, x) s.t. g = gcd(a, b), xa = g (mod b), 0 <= x < b/g
constexpr std::pair<long long, long long> inv_gcd(long long a, long long b) {
    a = safe_mod(a, b);
    if (a == 0) return {b, 0};

    // Contracts:
    // [1] s - m0 * a = 0 (mod b)
    // [2] t - m1 * a = 0 (mod b)
    // [3] s * |m1| + t * |m0| <= b
    long long s = b, t = a;
    long long m0 = 0, m1 = 1;

    while (t) {
        long long u = s / t;
        s -= t * u;
        m0 -= m1 * u;  // |m1 * u| <= |m1| * s <= b

        // [3]:
        // (s - t * u) * |m1| + t * |m0 - m1 * u|
        // <= s * |m1| - t * u * |m1| + t * (|m0| + |m1| * u)
        // = s * |m1| + t * |m0| <= b

        auto tmp = s;
        s = t;
        t = tmp;
        tmp = m0;
        m0 = m1;
        m1 = tmp;
    }
    // by [3]: |m0| <= b/g
    // by g != b: |m0| < b/g
    if (m0 < 0) m0 += b / s;
    return {s, m0};
}

// Compile time primitive root
// @param m must be prime
// @return primitive root (and minimum in now)
constexpr int primitive_root_constexpr(int m) {
    if (m == 2) return 1;
    if (m == 167772161) return 3;
    if (m == 469762049) return 3;
    if (m == 754974721) return 11;
    if (m == 998244353) return 3;
    int divs[20] = {};
    divs[0] = 2;
    int cnt = 1;
    int x = (m - 1) / 2;
    while (x % 2 == 0) x /= 2;
    for (int i = 3; (long long)(i)*i <= x; i += 2) {
        if (x % i == 0) {
            divs[cnt++] = i;
            while (x % i == 0) {
                x /= i;
            }
        }
    }
    if (x > 1) {
        divs[cnt++] = x;
    }
    for (int g = 2;; g++) {
        bool ok = true;
        for (int i = 0; i < cnt; i++) {
            if (pow_mod_constexpr(g, (m - 1) / divs[i], m) == 1) {
                ok = false;
                break;
            }
        }
        if (ok) return g;
    }
}
template <int m> constexpr int primitive_root = primitive_root_constexpr(m);

}  // namespace internal

}  // namespace atcoder



namespace atcoder {

long long pow_mod(long long x, long long n, int m) {
  assert(0 <= n && 1 <= m);
  if (m == 1) return 0;
  internal::barrett bt((unsigned int)(m));
  unsigned int r = 1, y = (unsigned int)(internal::safe_mod(x, m));
  while (n) {
    if (n & 1) r = bt.mul(r, y);
    y = bt.mul(y, y);
    n >>= 1;
  }
  return r;
}

long long inv_mod(long long x, long long m) {
  assert(1 <= m);
  auto z = internal::inv_gcd(x, m);
  assert(z.first == 1);
  return z.second;
}

// (rem, mod)
std::pair<long long, long long> crt(const std::vector<long long>& r,
                                    const std::vector<long long>& m) {
  assert(r.size() == m.size());
  int n = int(r.size());
  // Contracts: 0 <= r0 < m0
  long long r0 = 0, m0 = 1;
  for (int i = 0; i < n; i++) {
    assert(1 <= m[i]);
    long long r1 = internal::safe_mod(r[i], m[i]), m1 = m[i];
    if (m0 < m1) {
      std::swap(r0, r1);
      std::swap(m0, m1);
    }
    if (m0 % m1 == 0) {
      if (r0 % m1 != r1) return {0, 0};
      continue;
    }
    // assume: m0 > m1, lcm(m0, m1) >= 2 * max(m0, m1)

    // (r0, m0), (r1, m1) -> (r2, m2 = lcm(m0, m1));
    // r2 % m0 = r0
    // r2 % m1 = r1
    // -> (r0 + x*m0) % m1 = r1
    // -> x*u0*g % (u1*g) = (r1 - r0) (u0*g = m0, u1*g = m1)
    // -> x = (r1 - r0) / g * inv(u0) (mod u1)

    // im = inv(u0) (mod u1) (0 <= im < u1)
    long long g, im;
    std::tie(g, im) = internal::inv_gcd(m0, m1);

    long long u1 = (m1 / g);
    // |r1 - r0| < (m0 + m1) <= lcm(m0, m1)
    if ((r1 - r0) % g) return {0, 0};

    // u1 * u1 <= m1 * m1 / g / g <= m0 * m1 / g = lcm(m0, m1)
    long long x = (r1 - r0) / g % u1 * im % u1;

    // |r0| + |m0 * x|
    // < m0 + m0 * (u1 - 1)
    // = m0 + m0 * m1 / g - m0
    // = lcm(m0, m1)
    r0 += x * m0;
    m0 *= u1;  // -> lcm(m0, m1)
    if (r0 < 0) r0 += m0;
  }
  return {r0, m0};
}

long long floor_sum(long long n, long long m, long long a, long long b) {
  long long ans = 0;
  if (a < 0) {
    unsigned long long a2 = internal::safe_mod(a, m);
    ans -= 1ULL * n * (n - 1) / 2 * ((a2 - a) / m);
    a = a2;
  }
  if (b < 0) {
    unsigned long long b2 = internal::safe_mod(b, m);
    ans -= 1ULL * n * ((b2 - b) / m);
    b = b2;
  }
  if (a >= m) {
    ans += (n - 1) * n * (a / m) / 2;
    a %= m;
  }
  if (b >= m) {
    ans += n * (b / m);
    b %= m;
  }
  long long y_max = (a * n + b) / m, x_max = (y_max * m - b);
  if (y_max == 0) return ans;
  ans += (n - (x_max + a - 1) / a) * y_max;
  ans += floor_sum(y_max, a, m, (a - x_max % a) % a);
  return ans;
}

}  // namespace atcoder



//


// a/b 以下の最大の整数
long long floor(long long a, long long b) {
  assert(b != 0);
  if (b < 0) a = -a, b = -b;
  return a / b - (a % b < 0);
}
// a/b 未満の最大の整数
long long under(long long a, long long b) {
  assert(b != 0);
  if (b < 0) a = -a, b = -b;
  return a / b - (a % b <= 0);
}
// a/b 以上の最小の整数
long long ceil(long long a, long long b) {
  assert(b != 0);
  if (b < 0) a = -a, b = -b;
  return a / b + (a % b > 0);
}
// a/b 超過の最小の整数
long long over(long long a, long long b) {
  assert(b != 0);
  if (b < 0) a = -a, b = -b;
  return a / b + (a % b >= 0);
}
// a mod b (b > 0)
long long modulo(long long a, long long b) {
  assert(b >= 0);
  long long c = a % b;
  return c < 0 ? c + b : c;
}


using namespace Nyaan;

ll naive(ll N, ll M, ll X, ll Y) {
  vl A(N);
  rep(i, N) A[i] = (i * X + Y) % M;
  ll ans = 0;
  rep(i, N) reg(j, i + 1, N) ans += A[i] > A[j];
  return ans;
}

// sum_{x < n} floor((a * x + b) / m) * x
ll naive2(ll a, ll b, ll m, ll n) {
  ll res = 0;
  rep(x, n) res += floor(a * x + b, m) * x;
  return res;
}

// sum_{x < n} x
ll s1(ll n) { return n * (n - 1) / 2; }
// sum_{x < n} x^2
ll s2(ll n) { return n * (n - 1) * (2 * n - 1) / 6; }

// sum_{x < n} floor((a * x + b) / m) * x
ll calc2(ll a, ll b, ll m, ll n) {
  if (n == 0) return 0;
  if (!(0 <= a and a < m)) {
    ll a2 = modulo(a, m);
    return calc2(a2, b, m, n) - s2(n) * ((a2 - a) / m);
  }
  if (!(0 <= b and b < m)) {
    ll b2 = modulo(b, m);
    return calc2(a, b2, m, n) - s1(n) * ((b2 - b) / m);
  }
  if (a == 0) return 0;
    // return ans + naive2(a,b,m,n);

    // z = floor(a * n + i, m) とする

    // sum_{x < n} floor(ax + b, m) * x
    // = sum_{x < n} sum_{j < z} [j < floor(ax + b, m)] * x
    // = sum_{j < z} sum_{x < n} [j < floor(ax + b, m)] * x
    // = sum_{j < z} sum_{x < n} [m * (j + 1) < ax + b] * x
    // = sum_{j < z} sum_{x < n} [floor(m * j + m - b, a) < x] * x
    // ???????

    // 平方分割系を考える
#ifdef NyaanLocal
  bool cond = m * m <= n;
#else
  bool cond = m <= 50000;
#endif

  // m が小さい時
  if (cond) {
    if (n < m) return naive2(a, b, m, n);
    // m 周期で考えていい

    // floor((a * (z m + x) + b) / m) * (z m + x)
    // = (floor((a * x + b) / m) + a * z) * (z m + x)
    if (n % m != 0) {
      ll c = n / m;
      ll ans = 0;
      ans += calc2(a, b, m, c * m);
      ans += naive2(a, b + a * c * m, m, n % m);
      ans += c * m * atcoder::floor_sum(n % m, m, a, b + a * c * m);
      return ans;
    }

    // floor((a * (z m + x) + b) / m) * (z m + x)
    // = (floor((a * x + b) / m) + a * z) * (z m + x)
    // を 0 <= z < c, 0 <= x < m について足す
    ll c = n / m;
    ll ans = 0;

    // floor((a * x + b) / m) * z * m
    // rep(z, c) rep(x, m) ans += floor(a*x+b,m)*z*m;
    ans += atcoder::floor_sum(m, m, a, b) * s1(c) * m;
    // floor((a * x + b) / m) * x
    // rep(z, c) rep(x, m) ans += floor(a*x+b,m)*x;
    ans += naive2(a, b, m, m) * c;
    // a * z * z * m
    // rep(z, c) rep(x, m) ans +=a*z*z*m;
    ans += a * s2(c) * m * m;
    // a * z * x
    // rep(z, c) rep(x, m) ans+=a*z*x;
    ans += a * s1(c) * s1(m);
    return ans;
  }

  // m が大きい時
  ll ans = 0;
  for (ll i = 0, j = 0, q = 0; i < n; i = j, q++) {
    // a*x+b<(q+1)*m
    j = min(n, ceil((q + 1) * m - b, a));
    reg(k, i, j) {
      if (floor(a * k + b, m) != q) exit(1);
    }
    ans += q * (s1(j) - s1(i));
  }
  return ans;
}

ll calc(ll N, ll M, ll X, ll Y) {
  ll ans = 0;
  /*
  rep(i, N) reg(j, i + 1, N) {
    // i < j
    ans += floor(M - 1 + (i - j) * X, M);
    ans += floor(j * X + Y, M);
    ans -= floor(i * X + Y, M);
  }
  */
  /**/
  rep(k, N) {
    // ans += floor(M - 1 - (N - 1) * X + k * X, M) * (k + 1);
    // ans += floor(M - 1 - (N - 1) * X + k * X, M);
    // ans += floor(k * X + Y, M) * (2 * k - (N - 1));
  }
  //*/
  ans += calc2(X, M - 1 - (N - 1) * X, M, N);
  ans += atcoder::floor_sum(N, M, X, M - 1 - (N - 1) * X);
  ans += calc2(X, Y, M, N) * 2;
  ans -= atcoder::floor_sum(N, M, X, Y) * (N - 1);
  return ans;
}

void test() {
  int mx = 20;
  rep1(N, mx) rep1(M, mx) rep(X, M) rep(Y, M) {
    ll an = naive(N, M, X, Y);
    ll ac = calc(N, M, X, Y);
    if (an != ac) trc2(N, M, X, Y, an, ac);
    assert(an == ac);
  }

  trc2("OK");
}

void q() {
  // A_i = (iX + Y) mod M

  // sum_{0 <= i < j < N} (A_i > A_j)

  // sum_{i < j} (M + A_i - A_j > M)
  //
  // 0 < M + A_i - A_j < 2M -> 0 か 1
  //
  // sum_{i < j} (M - 1 + A_i - A_j) // M
  // 計算できる?謎

  // A_i = (i X + Y) - (i X + Y) // M * M
  // を代入

  // A_i - A_j
  // (i - j) X + (j X + Y) // M * M - (i X + Y) // M * M
  // なので

  // (M - 1 + A_i - A_j) // M
  // = (M - 1 + (i - j) X) // M + (j X + Y) // M - (i X + Y) // M
  // になる

  inl(N, M, X, Y);
  out(calc(N, M, X, Y));
}

void Nyaan::solve() {
  test();

  int t = 1;
  in(t);
  while (t--) q();
}
0