結果

問題 No.2369 Some Products
ユーザー Kak1_n0_tane
提出日時 2023-06-25 14:48:14
言語 C++17
(gcc 13.3.0 + boost 1.87.0)
結果
TLE  
(最新)
AC  
(最初)
実行時間 -
コード長 14,612 bytes
コンパイル時間 4,820 ms
コンパイル使用メモリ 268,144 KB
最終ジャッジ日時 2025-02-15 02:13:20
ジャッジサーバーID
(参考情報)
judge5 / judge3
このコードへのチャレンジ
(要ログイン)
ファイルパターン 結果
sample AC * 1
other AC * 11 TLE * 3
権限があれば一括ダウンロードができます

ソースコード

diff #
プレゼンテーションモードにする

#include <bits/stdc++.h>
using namespace std;
#include <atcoder/all>
using namespace atcoder;
istream &operator>>(istream &is, modint998244353 &a) { long long v; is >> v; a = v; return is; }
ostream &operator<<(ostream &os, const modint998244353 &a) { return os << a.val(); }
istream &operator>>(istream &is, modint1000000007 &a) { long long v; is >> v; a = v; return is; }
ostream &operator<<(ostream &os, const modint1000000007 &a) { return os << a.val(); }
template<int m> istream &operator>>(istream &is, static_modint<m> &a) { long long v; is >> v; a = v; return is; }
template<int m> istream &operator>>(istream &is, dynamic_modint<m> &a) { long long v; is >> v; a = v; return is; }
template<int m> ostream &operator<<(ostream &os, const static_modint<m> &a) { return os << a.val(); }
template<int m> ostream &operator<<(ostream &os, const dynamic_modint<m> &a) { return os << a.val(); }
#define rep_(i, a_, b_, a, b, ...) for (int i = (a), lim##i = (b); i < lim##i; ++i)
#define rep(i, ...) rep_(i, __VA_ARGS__, __VA_ARGS__, 0, __VA_ARGS__)
#define drep_(i, a_, b_, a, b, ...) for (int i = (a)-1, lim##i = (b); i >= lim##i; --i)
#define drep(i, ...) drep_(i, __VA_ARGS__, __VA_ARGS__, __VA_ARGS__, 0)
using ll = long long;
template<class T> istream &operator>>(istream &is, vector<T> &v) { for (auto &e : v) is >> e; return is; }
template<class T> ostream &operator<<(ostream &os, const vector<T> &v) { for (auto &e : v) os << e << ' '; return os; }
struct fast_ios { fast_ios(){ cin.tie(nullptr); ios::sync_with_stdio(false); cout << fixed << setprecision(20); }; } fast_ios_;
using mint = modint998244353;
template<typename T> struct Factorial {
int MAX;
vector<T> fac, finv;
Factorial(int m = 0) : MAX(m), fac(m+1, 1), finv(m+1, 1) {
rep(i, 2, MAX+1) fac[i] = fac[i-1] * i;
finv[MAX] /= fac[MAX];
drep(i, MAX+1, 3) finv[i-1] = finv[i] * i;
}
T binom(int n, int k) {
if (k < 0 || n < k) return 0;
return fac[n] * finv[k] * finv[n-k];
}
T perm(int n, int k) {
if (k < 0 || n < k) return 0;
return fac[n] * finv[n-k];
}
};
Factorial<mint> fc;
template<class T>
struct FormalPowerSeries : vector<T> {
using vector<T>::vector;
using vector<T>::operator=;
using F = FormalPowerSeries;
F operator-() const {
F res(*this);
for (auto &e : res) e = -e;
return res;
}
F &operator*=(const T &g) {
for (auto &e : *this) e *= g;
return *this;
}
F &operator/=(const T &g) {
assert(g != T(0));
*this *= g.inv();
return *this;
}
F &operator+=(const F &g) {
int n = this->size(), m = g.size();
rep(i, min(n, m)) (*this)[i] += g[i];
return *this;
}
F &operator-=(const F &g) {
int n = this->size(), m = g.size();
rep(i, min(n, m)) (*this)[i] -= g[i];
return *this;
}
F &operator<<=(const int d) {
int n = this->size();
if (d >= n) *this = F(n);
this->insert(this->begin(), d, 0);
this->resize(n);
return *this;
}
F &operator>>=(const int d) {
int n = this->size();
this->erase(this->begin(), this->begin() + min(n, d));
this->resize(n);
return *this;
}
// O(n log n)
F inv(int d = -1) const {
int n = this->size();
assert(n != 0 && (*this)[0] != 0);
if (d == -1) d = n;
assert(d >= 0);
F res{(*this)[0].inv()};
for (int m = 1; m < d; m *= 2) {
F f(this->begin(), this->begin() + min(n, 2*m));
F g(res);
f.resize(2*m), internal::butterfly(f);
g.resize(2*m), internal::butterfly(g);
rep(i, 2*m) f[i] *= g[i];
internal::butterfly_inv(f);
f.erase(f.begin(), f.begin() + m);
f.resize(2*m), internal::butterfly(f);
rep(i, 2*m) f[i] *= g[i];
internal::butterfly_inv(f);
T iz = T(2*m).inv(); iz *= -iz;
rep(i, m) f[i] *= iz;
res.insert(res.end(), f.begin(), f.begin() + m);
}
res.resize(d);
return res;
}
// fast: FMT-friendly modulus only
// O(n log n)
F &multiply_inplace(const F &g, int d = -1) {
int n = this->size();
if (d == -1) d = n;
assert(d >= 0);
*this = convolution(move(*this), g);
this->resize(d);
return *this;
}
F multiply(const F &g, const int d = -1) const { return F(*this).multiply_inplace(g, d); }
// O(n log n)
F &divide_inplace(const F &g, int d = -1) {
int n = this->size();
if (d == -1) d = n;
assert(d >= 0);
*this = convolution(move(*this), g.inv(d));
this->resize(d);
return *this;
}
F divide(const F &g, const int d = -1) const { return F(*this).divide_inplace(g, d); }
// // naive
// // O(n^2)
// F &multiply_inplace(const F &g) {
// int n = this->size(), m = g.size();
// drep(i, n) {
// (*this)[i] *= g[0];
// rep(j, 1, min(i+1, m)) (*this)[i] += (*this)[i-j] * g[j];
// }
// return *this;
// }
// F multiply(const F &g) const { return F(*this).multiply_inplace(g); }
// // O(n^2)
// F &divide_inplace(const F &g) {
// assert(g[0] != T(0));
// T ig0 = g[0].inv();
// int n = this->size(), m = g.size();
// rep(i, n) {
// rep(j, 1, min(i+1, m)) (*this)[i] -= (*this)[i-j] * g[j];
// (*this)[i] *= ig0;
// }
// return *this;
// }
// F divide(const F &g) const { return F(*this).divide_inplace(g); }
// sparse
// O(nk)
F &multiply_inplace(vector<pair<int, T>> g) {
int n = this->size();
auto [d, c] = g.front();
if (d == 0) g.erase(g.begin());
else c = 0;
drep(i, n) {
(*this)[i] *= c;
for (auto &[j, b] : g) {
if (j > i) break;
(*this)[i] += (*this)[i-j] * b;
}
}
return *this;
}
F multiply(const vector<pair<int, T>> &g) const { return F(*this).multiply_inplace(g); }
// O(nk)
F &divide_inplace(vector<pair<int, T>> g) {
int n = this->size();
auto [d, c] = g.front();
assert(d == 0 && c != T(0));
T ic = c.inv();
g.erase(g.begin());
rep(i, n) {
for (auto &[j, b] : g) {
if (j > i) break;
(*this)[i] -= (*this)[i-j] * b;
}
(*this)[i] *= ic;
}
return *this;
}
F divide(const vector<pair<int, T>> &g) const { return F(*this).divide_inplace(g); }
// multiply and divide (1 + cz^d)
// O(n)
void multiply_inplace(const int d, const T c) {
int n = this->size();
if (c == T(1)) drep(i, n-d) (*this)[i+d] += (*this)[i];
else if (c == T(-1)) drep(i, n-d) (*this)[i+d] -= (*this)[i];
else drep(i, n-d) (*this)[i+d] += (*this)[i] * c;
}
// O(n)
void divide_inplace(const int d, const T c) {
int n = this->size();
if (c == T(1)) rep(i, n-d) (*this)[i+d] -= (*this)[i];
else if (c == T(-1)) rep(i, n-d) (*this)[i+d] += (*this)[i];
else rep(i, n-d) (*this)[i+d] -= (*this)[i] * c;
}
// O(n)
T eval(const T &a) const {
T x(1), res(0);
for (auto e : *this) res += e * x, x *= a;
return res;
}
// O(n)
F &integral_inplace() {
int n = this->size();
assert(n > 0);
if (n == 1) return *this = F{0};
this->insert(this->begin(), 0);
this->pop_back();
vector<T> inv(n);
inv[1] = 1;
int p = T::mod();
rep(i, 2, n) inv[i] = - inv[p%i] * (p/i);
rep(i, 2, n) (*this)[i] *= inv[i];
return *this;
}
F integral() const { return F(*this).integral_inplace(); }
// O(n)
F &derivative_inplace() {
int n = this->size();
assert(n > 0);
rep(i, 2, n) (*this)[i] *= i;
this->erase(this->begin());
this->push_back(0);
return *this;
}
F derivative() const { return F(*this).derivative_inplace(); }
// O(n log n)
F &log_inplace(int d = -1) {
int n = this->size();
assert(n > 0 && (*this)[0] == 1);
if (d == -1) d = n;
assert(d >= 0);
if (d < n) this->resize(d);
F f_inv = this->inv();
this->derivative_inplace();
this->multiply_inplace(f_inv);
this->integral_inplace();
return *this;
}
F log(const int d = -1) const { return F(*this).log_inplace(d); }
// O(n log n)
// https://arxiv.org/abs/1301.5804 (Figure 1, right)
F &exp_inplace(int d = -1) {
int n = this->size();
assert(n > 0 && (*this)[0] == 0);
if (d == -1) d = n;
assert(d >= 0);
F g{1}, g_fft{1, 1};
(*this)[0] = 1;
this->resize(d);
F h_drv(this->derivative());
for (int m = 2; m < d; m *= 2) {
// prepare
F f_fft(this->begin(), this->begin() + m);
f_fft.resize(2*m), internal::butterfly(f_fft);
// Step 2.a'
{
F _g(m);
rep(i, m) _g[i] = f_fft[i] * g_fft[i];
internal::butterfly_inv(_g);
_g.erase(_g.begin(), _g.begin() + m/2);
_g.resize(m), internal::butterfly(_g);
rep(i, m) _g[i] *= g_fft[i];
internal::butterfly_inv(_g);
_g.resize(m/2);
_g /= T(-m) * m;
g.insert(g.end(), _g.begin(), _g.begin() + m/2);
}
// Step 2.b'--d'
F t(this->begin(), this->begin() + m);
t.derivative_inplace();
{
// Step 2.b'
F r{h_drv.begin(), h_drv.begin() + m-1};
// Step 2.c'
r.resize(m); internal::butterfly(r);
rep(i, m) r[i] *= f_fft[i];
internal::butterfly_inv(r);
r /= -m;
// Step 2.d'
t += r;
t.insert(t.begin(), t.back()); t.pop_back();
}
// Step 2.e'
if (2*m < d) {
t.resize(2*m); internal::butterfly(t);
g_fft = g; g_fft.resize(2*m); internal::butterfly(g_fft);
rep(i, 2*m) t[i] *= g_fft[i];
internal::butterfly_inv(t);
t.resize(m);
t /= 2*m;
}
else { //
F g1(g.begin() + m/2, g.end());
F s1(t.begin() + m/2, t.end());
t.resize(m/2);
g1.resize(m), internal::butterfly(g1);
t.resize(m), internal::butterfly(t);
s1.resize(m), internal::butterfly(s1);
rep(i, m) s1[i] = g_fft[i] * s1[i] + g1[i] * t[i];
rep(i, m) t[i] *= g_fft[i];
internal::butterfly_inv(t);
internal::butterfly_inv(s1);
rep(i, m/2) t[i+m/2] += s1[i];
t /= m;
}
// Step 2.f'
F v(this->begin() + m, this->begin() + min<int>(d, 2*m)); v.resize(m);
t.insert(t.begin(), m-1, 0); t.push_back(0);
t.integral_inplace();
rep(i, m) v[i] -= t[m+i];
// Step 2.g'
v.resize(2*m); internal::butterfly(v);
rep(i, 2*m) v[i] *= f_fft[i];
internal::butterfly_inv(v);
v.resize(m);
v /= 2*m;
// Step 2.h'
rep(i, min(d-m, m)) (*this)[m+i] = v[i];
}
return *this;
}
F exp(const int d = -1) const { return F(*this).exp_inplace(d); }
// O(n log n)
F &pow_inplace(const ll k, int d = -1) {
int n = this->size();
if (d == -1) d = n;
assert(d >= 0 && k >= 0);
if (d == 0) return *this = F(0);
if (k == 0) {
*this = F(d);
(*this)[0] = 1;
return *this;
}
int l = 0;
while (l < n && (*this)[l] == 0) ++l;
if (l == n || l > (d-1)/k) return *this = F(d);
T c{(*this)[l]};
this->erase(this->begin(), this->begin() + l);
*this /= c;
this->log_inplace(d - l*k);
*this *= k;
this->exp_inplace();
*this *= c.pow(k);
this->insert(this->begin(), l*k, 0);
return *this;
}
F pow(const ll k, const int d = -1) const { return F(*this).pow_inplace(k, d); }
// O(n log n)
F &shift_inplace(const T c) {
int n = this->size();
fc = Factorial<T>(n);
rep(i, n) (*this)[i] *= fc.fac[i];
reverse(this->begin(), this->end());
F g(n);
T cp = 1;
rep(i, n) g[i] = cp * fc.finv[i], cp *= c;
this->multiply_inplace(g, n);
reverse(this->begin(), this->end());
rep(i, n) (*this)[i] *= fc.finv[i];
return *this;
}
F shift(const T c) const { return F(*this).shift_inplace(c); }
F operator*(const T &g) const { return F(*this) *= g; }
F operator/(const T &g) const { return F(*this) /= g; }
F operator+(const F &g) const { return F(*this) += g; }
F operator-(const F &g) const { return F(*this) -= g; }
F operator<<(const int d) const { return F(*this) <<= d; }
F operator>>(const int d) const { return F(*this) >>= d; }
};
using fps = FormalPowerSeries<mint>;
int main(){
// FILE *out = freopen("out1.txt", "w", stdout);
int N;
cin >> N;
vector<ll> P(N);
rep(i,N) cin >> P[i];
// func[B][X] := 1BX
vector<vector<mint>> func(N+1, vector<mint>(N+1, 0));
rep(x,N+1){
if(x==0) continue;
rep(b,N){
if(x==1){
func[b+1][1] = func[b][1] + P[b];
}
else{
func[b+1][x] = func[b][x] + P[b]*func[b][x-1];
}
}
}
// rep(i,N+1){
// rep(j,N+1){
// cout << func[i][j] << (j==N?'\n':' ');
// }
// }
int Q;
cin >> Q;
for(int i=0;i<Q;i++){
ll A, B, X;
cin >> A >> B >> X;
fps keisuu(X+1);
keisuu[0] = 1;
rep(i,X) keisuu[i+1] = func[A-1][i+1];
fps answer(X+1);
answer[0] = 1;
rep(i,X) answer[i+1] = func[B][i+1];
// cout << keisuu << '\n';
// cout << answer << '\n';
fps func_abi(X+1);
func_abi = convolution(answer, keisuu.inv());
cout << func_abi[X] << '\n';
}
}
הההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההה
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
0