結果
問題 | No.2369 Some Products |
ユーザー | Pachicobue |
提出日時 | 2023-06-30 22:16:05 |
言語 | C++17 (gcc 12.3.0 + boost 1.83.0) |
結果 |
TLE
|
実行時間 | - |
コード長 | 35,927 bytes |
コンパイル時間 | 2,995 ms |
コンパイル使用メモリ | 256,052 KB |
実行使用メモリ | 10,752 KB |
最終ジャッジ日時 | 2024-07-07 10:04:54 |
合計ジャッジ時間 | 6,864 ms |
ジャッジサーバーID (参考情報) |
judge5 / judge3 |
(要ログイン)
テストケース
テストケース表示入力 | 結果 | 実行時間 実行使用メモリ |
---|---|---|
testcase_00 | AC | 2 ms
10,752 KB |
testcase_01 | AC | 1 ms
5,376 KB |
testcase_02 | TLE | - |
testcase_03 | -- | - |
testcase_04 | -- | - |
testcase_05 | -- | - |
testcase_06 | -- | - |
testcase_07 | -- | - |
testcase_08 | -- | - |
testcase_09 | -- | - |
testcase_10 | -- | - |
testcase_11 | -- | - |
testcase_12 | -- | - |
testcase_13 | -- | - |
testcase_14 | -- | - |
ソースコード
#include <bits/stdc++.h> using i32 = int; using u32 = unsigned int; using i64 = long long; using u64 = unsigned long long; using i128 = __int128_t; using u128 = __uint128_t; using f64 = double; using f80 = long double; using f128 = __float128; constexpr i32 operator"" _i32(u64 v) { return v; } constexpr u32 operator"" _u32(u64 v) { return v; } constexpr i64 operator"" _i64(u64 v) { return v; } constexpr u64 operator"" _u64(u64 v) { return v; } constexpr f64 operator"" _f64(f80 v) { return v; } constexpr f80 operator"" _f80(f80 v) { return v; } using Istream = std::istream; using Ostream = std::ostream; using Str = std::string; template<typename T> using Lt = std::less<T>; template<typename T> using Gt = std::greater<T>; template<int n> using BSet = std::bitset<n>; template<typename T1, typename T2> using Pair = std::pair<T1, T2>; template<typename... Ts> using Tup = std::tuple<Ts...>; template<typename T, int N> using Arr = std::array<T, N>; template<typename... Ts> using Deq = std::deque<Ts...>; template<typename... Ts> using Set = std::set<Ts...>; template<typename... Ts> using MSet = std::multiset<Ts...>; template<typename... Ts> using USet = std::unordered_set<Ts...>; template<typename... Ts> using UMSet = std::unordered_multiset<Ts...>; template<typename... Ts> using Map = std::map<Ts...>; template<typename... Ts> using MMap = std::multimap<Ts...>; template<typename... Ts> using UMap = std::unordered_map<Ts...>; template<typename... Ts> using UMMap = std::unordered_multimap<Ts...>; template<typename... Ts> using Vec = std::vector<Ts...>; template<typename... Ts> using Stack = std::stack<Ts...>; template<typename... Ts> using Queue = std::queue<Ts...>; template<typename T> using MaxHeap = std::priority_queue<T>; template<typename T> using MinHeap = std::priority_queue<T, Vec<T>, Gt<T>>; constexpr bool LOCAL = false; constexpr bool OJ = not LOCAL; template<typename T> static constexpr T OjLocal(T oj, T local) { return LOCAL ? local : oj; } template<typename T> constexpr T LIMMIN = std::numeric_limits<T>::min(); template<typename T> constexpr T LIMMAX = std::numeric_limits<T>::max(); template<typename T = i64> constexpr T INF = (LIMMAX<T> - 1) / 2; template<typename T = f80> constexpr T PI = T{3.141592653589793238462643383279502884}; template<typename T = u64> constexpr T TEN(int n) { return n == 0 ? T{1} : TEN<T>(n - 1) * T{10}; } template<typename T> constexpr bool chmin(T& a, const T& b) { return (a > b ? (a = b, true) : false); } template<typename T> constexpr bool chmax(T& a, const T& b) { return (a < b ? (a = b, true) : false); } template<typename T> constexpr T floorDiv(T x, T y) { assert(y != 0); if (y < 0) { x = -x, y = -y; } return x >= 0 ? x / y : (x - y + 1) / y; } template<typename T> constexpr T ceilDiv(T x, T y) { assert(y != 0); if (y < 0) { x = -x, y = -y; } return x >= 0 ? (x + y - 1) / y : x / y; } template<typename T, typename I> constexpr T powerMonoid(T v, I n, const T& e) { assert(n >= 0); if (n == 0) { return e; } return (n % 2 == 1 ? v * powerMonoid(v, n - 1, e) : powerMonoid(v * v, n / 2, e)); } template<typename T, typename I> constexpr T powerInt(T v, I n) { return powerMonoid(v, n, T{1}); } template<typename Vs, typename... Args> constexpr auto accumAll(const Vs& vs, Args... args) { return std::accumulate(std::begin(vs), std::end(vs), args...); } template<typename Vs> constexpr auto sumAll(const Vs& vs) { return accumAll(vs, decltype(vs[0]){}); } template<typename Vs> constexpr auto gcdAll(const Vs& vs) { return accumAll(vs, decltype(vs[0]){}, [&](auto v1, auto v2) { return std::gcd(v1, v2); }); } template<typename Vs, typename V> constexpr int lbInd(const Vs& vs, const V& v) { return std::lower_bound(std::begin(vs), std::end(vs), v) - std::begin(vs); } template<typename Vs, typename V> constexpr int ubInd(const Vs& vs, const V& v) { return std::upper_bound(std::begin(vs), std::end(vs), v) - std::begin(vs); } template<typename Vs> constexpr void concat(Vs& vs1, const Vs vs2) { std::copy(std::begin(vs2), std::end(vs2), std::back_inserter(vs1)); } template<typename Vs> constexpr Vs concatted(Vs vs1, const Vs& vs2) { concat(vs1, vs2); return vs1; } template<typename Vs, typename V> constexpr void fillAll(Vs& arr, const V& v) { if constexpr (std::is_convertible<V, Vs>::value) { arr = v; } else { for (auto& subarr : arr) { fillAll(subarr, v); } } } template<typename T, typename F> constexpr Vec<T> genVec(int n, F gen) { Vec<T> ans; std::generate_n(std::back_inserter(ans), n, gen); return ans; } template<typename Vs> constexpr auto maxAll(const Vs& vs) { return *std::max_element(std::begin(vs), std::end(vs)); } template<typename Vs> constexpr auto minAll(const Vs& vs) { return *std::min_element(std::begin(vs), std::end(vs)); } template<typename Vs> constexpr auto maxInd(const Vs& vs) { return *std::max_element(std::begin(vs), std::end(vs)); } template<typename Vs> constexpr int minInd(const Vs& vs) { return std::min_element(std::begin(vs), std::end(vs)) - std::begin(vs); } template<typename Vs> constexpr int maxInd(const Vs& vs) { return std::max_element(std::begin(vs), std::end(vs)) - std::begin(vs); } template<typename T = int> constexpr Vec<T> iotaVec(int n, T offset = 0) { Vec<T> ans(n); std::iota(std::begin(ans), std::end(ans), offset); return ans; } template<typename Vs> constexpr Vec<int> iotaSort(const Vs& vs) { auto is = iotaVec(vs.size()); std::sort(std::begin(is), std::end(is), [&](int i, int j) { return vs[i] < vs[j]; }); return is; } inline Vec<int> permInv(const Vec<int>& is) { auto ris = is; for (int i = 0; i < (int)is.size(); i++) { ris[is[i]] = i; } return ris; } template<typename Vs, typename V> constexpr void plusAll(Vs& vs, const V& v) { for (auto& v_ : vs) { v_ += v; } } template<typename Vs> constexpr void reverseAll(Vs& vs) { std::reverse(std::begin(vs), std::end(vs)); } template<typename Vs> constexpr Vs reversed(Vs vs) { reverseAll(vs); return vs; } template<typename Vs, typename... Args> constexpr void sortAll(Vs& vs, Args... args) { std::sort(std::begin(vs), std::end(vs), args...); } template<typename Vs, typename... Args> constexpr Vs sorted(Vs vs, Args... args) { sortAll(vs, args...); return vs; } inline Ostream& operator<<(Ostream& os, i128 v) { bool minus = false; if (v < 0) { minus = true, v = -v; } Str ans; if (v == 0) { ans = "0"; } while (v) { ans.push_back('0' + v % 10), v /= 10; } std::reverse(ans.begin(), ans.end()); return os << (minus ? "-" : "") << ans; } inline Ostream& operator<<(Ostream& os, u128 v) { Str ans; if (v == 0) { ans = "0"; } while (v) { ans.push_back('0' + v % 10), v /= 10; } std::reverse(ans.begin(), ans.end()); return os << ans; } constexpr bool isBitOn(u64 mask, int ind) { return (mask >> ind) & 1_u64; } constexpr bool isBitOff(u64 mask, int ind) { return not isBitOn(mask, ind); } constexpr int topBit(u64 v) { return v == 0 ? -1 : 63 - __builtin_clzll(v); } constexpr int lowBit(u64 v) { return v == 0 ? 64 : __builtin_ctzll(v); } constexpr int bitWidth(u64 v) { return topBit(v) + 1; } constexpr u64 bitCeil(u64 v) { return v ? (1_u64 << bitWidth(v - 1)) : 1_u64; } constexpr u64 bitFloor(u64 v) { return v ? (1_u64 << topBit(v)) : 0_u64; } constexpr bool hasSingleBit(u64 v) { return (v > 0) and ((v & (v - 1)) == 0); } constexpr u64 bitMask(int bitWidth) { return (bitWidth == 64 ? ~0_u64 : (1_u64 << bitWidth) - 1); } constexpr u64 bitMask(int start, int end) { return bitMask(end - start) << start; } constexpr int popCount(u64 v) { return v ? __builtin_popcountll(v) : 0; } constexpr bool popParity(u64 v) { return v > 0 and __builtin_parity(v) == 1; } template<typename F> struct Fix : F { constexpr Fix(F&& f) : F{std::forward<F>(f)} {} template<typename... Args> constexpr auto operator()(Args&&... args) const { return F::operator()(*this, std::forward<Args>(args)...); } }; class irange { private: struct itr { constexpr itr(i64 start = 0, i64 step = 1) : m_cnt{start}, m_step{step} {} constexpr bool operator!=(const itr& it) const { return m_cnt != it.m_cnt; } constexpr i64 operator*() { return m_cnt; } constexpr itr& operator++() { return m_cnt += m_step, *this; } i64 m_cnt, m_step; }; i64 m_start, m_end, m_step; public: static constexpr i64 cnt(i64 start, i64 end, i64 step) { if (step == 0) { return -1; } const i64 d = (step > 0 ? step : -step); const i64 l = (step > 0 ? start : end); const i64 r = (step > 0 ? end : start); i64 n = (r - l) / d + ((r - l) % d ? 1 : 0); if (l >= r) { n = 0; } return n; } constexpr irange(i64 start, i64 end, i64 step = 1) : m_start{start}, m_end{m_start + step * cnt(start, end, step)}, m_step{step} { assert(step != 0); } constexpr itr begin() const { return itr{m_start, m_step}; } constexpr itr end() const { return itr{m_end, m_step}; } }; constexpr irange rep(i64 end) { return irange(0, end, 1); } constexpr irange per(i64 rend) { return irange(rend - 1, -1, -1); } class Scanner { public: Scanner(Istream& is = std::cin) : m_is{is} { m_is.tie(nullptr)->sync_with_stdio(false); } template<typename T> T val() { T v; return m_is >> v, v; } template<typename T> T val(T offset) { return val<T>() - offset; } template<typename T> Vec<T> vec(int n) { return genVec<T>(n, [&]() { return val<T>(); }); } template<typename T> Vec<T> vec(int n, T offset) { return genVec<T>(n, [&]() { return val<T>(offset); }); } template<typename T> Vec<Vec<T>> vvec(int n, int m) { return genVec<Vec<T>>(n, [&]() { return vec<T>(m); }); } template<typename T> Vec<Vec<T>> vvec(int n, int m, const T offset) { return genVec<Vec<T>>(n, [&]() { return vec<T>(m, offset); }); } template<typename... Args> auto tup() { return Tup<Args...>{val<Args>()...}; } template<typename... Args> auto tup(Args... offsets) { return Tup<Args...>{val<Args>(offsets)...}; } private: Istream& m_is; }; inline Scanner in; class Printer { public: Printer(Ostream& os = std::cout) : m_os{os} { m_os << std::fixed << std::setprecision(15); } template<typename... Args> int operator()(const Args&... args) { return dump(args...), 0; } template<typename... Args> int ln(const Args&... args) { return dump(args...), m_os << '\n', 0; } template<typename... Args> int el(const Args&... args) { return dump(args...), m_os << std::endl, 0; } int YES(bool b = true) { return ln(b ? "YES" : "NO"); } int NO(bool b = true) { return YES(not b); } int Yes(bool b = true) { return ln(b ? "Yes" : "No"); } int No(bool b = true) { return Yes(not b); } private: template<typename T> void dump(const T& v) { m_os << v; } template<typename T> void dump(const Vec<T>& vs) { for (int i : rep(vs.size())) { m_os << (i ? " " : ""), dump(vs[i]); } } template<typename T> void dump(const Vec<Vec<T>>& vss) { for (int i : rep(vss.size())) { m_os << (i ? "\n" : ""), dump(vss[i]); } } template<typename T, typename... Ts> int dump(const T& v, const Ts&... args) { return dump(v), m_os << ' ', dump(args...), 0; } Ostream& m_os; }; inline Printer out; template<typename T, int n, int i = 0> auto ndVec(int const (&szs)[n], const T x = T{}) { if constexpr (i == n) { return x; } else { return std::vector(szs[i], ndVec<T, n, i + 1>(szs, x)); } } template<typename T, typename F> inline T binSearch(T ng, T ok, F check) { while (std::abs(ok - ng) > 1) { const T mid = (ok + ng) / 2; (check(mid) ? ok : ng) = mid; } return ok; } template<typename T, typename F> inline T fbinSearch(T ng, T ok, F check, int times) { for (auto _temp_name_0 [[maybe_unused]] : rep(times)) { const T mid = (ok + ng) / 2; (check(mid) ? ok : ng) = mid; } return ok; } template<typename T> constexpr T clampAdd(T x, T y, T min, T max) { return std::clamp(x + y, min, max); } template<typename T> constexpr T clampSub(T x, T y, T min, T max) { return std::clamp(x - y, min, max); } template<typename T> constexpr T clampMul(T x, T y, T min, T max) { if (y < 0) { x = -x, y = -y; } const T xmin = ceilDiv(min, y); const T xmax = floorDiv(max, y); if (x < xmin) { return min; } else if (x > xmax) { return max; } else { return x * y; } } template<typename T> constexpr T clampDiv(T x, T y, T min, T max) { return std::clamp(floorDiv(x, y), min, max); } template<typename T> constexpr Pair<T, T> extgcd(const T a, const T b) // [x,y] -> ax+by=gcd(a,b) { static_assert(std::is_signed_v<T>, "Signed integer is allowed."); assert(a != 0 or b != 0); if (a >= 0 and b >= 0) { if (a < b) { const auto [y, x] = extgcd(b, a); return {x, y}; } if (b == 0) { return {1, 0}; } const auto [x, y] = extgcd(b, a % b); return {y, x - (a / b) * y}; } else { auto [x, y] = extgcd(std::abs(a), std::abs(b)); if (a < 0) { x = -x; } if (b < 0) { y = -y; } return {x, y}; } } template<typename T> constexpr T inverse(const T a, const T mod) // ax=gcd(a,M) (mod M) { assert(a > 0 and mod > 0); auto [x, y] = extgcd(a, mod); if (x <= 0) { x += mod; } return x; } template<u32 mod_, u32 root_, u32 max2p_> class modint { template<typename U = u32&> static U modRef() { static u32 s_mod = 0; return s_mod; } template<typename U = u32&> static U rootRef() { static u32 s_root = 0; return s_root; } template<typename U = u32&> static U max2pRef() { static u32 s_max2p = 0; return s_max2p; } public: static_assert(mod_ <= LIMMAX<i32>, "mod(signed int size) only supported!"); static constexpr bool isDynamic() { return (mod_ == 0); } template<typename U = const u32> static constexpr std::enable_if_t<mod_ != 0, U> mod() { return mod_; } template<typename U = const u32> static std::enable_if_t<mod_ == 0, U> mod() { return modRef(); } template<typename U = const u32> static constexpr std::enable_if_t<mod_ != 0, U> root() { return root_; } template<typename U = const u32> static std::enable_if_t<mod_ == 0, U> root() { return rootRef(); } template<typename U = const u32> static constexpr std::enable_if_t<mod_ != 0, U> max2p() { return max2p_; } template<typename U = const u32> static std::enable_if_t<mod_ == 0, U> max2p() { return max2pRef(); } template<typename U = u32> static void setMod(std::enable_if_t<mod_ == 0, U> m) { assert(1 <= m and m <= LIMMAX<i32>); modRef() = m; sinvRef() = {1, 1}; factRef() = {1, 1}; ifactRef() = {1, 1}; } template<typename U = u32> static void setRoot(std::enable_if_t<mod_ == 0, U> r) { rootRef() = r; } template<typename U = u32> static void setMax2p(std::enable_if_t<mod_ == 0, U> m) { max2pRef() = m; } constexpr modint() : m_val{0} {} constexpr modint(i64 v) : m_val{normll(v)} {} constexpr void setRaw(u32 v) { m_val = v; } constexpr modint operator-() const { return modint{0} - (*this); } constexpr modint& operator+=(const modint& m) { m_val = norm(m_val + m.val()); return *this; } constexpr modint& operator-=(const modint& m) { m_val = norm(m_val + mod() - m.val()); return *this; } constexpr modint& operator*=(const modint& m) { m_val = normll((i64)m_val * (i64)m.val() % (i64)mod()); return *this; } constexpr modint& operator/=(const modint& m) { return *this *= m.inv(); } constexpr modint operator+(const modint& m) const { auto v = *this; return v += m; } constexpr modint operator-(const modint& m) const { auto v = *this; return v -= m; } constexpr modint operator*(const modint& m) const { auto v = *this; return v *= m; } constexpr modint operator/(const modint& m) const { auto v = *this; return v /= m; } constexpr bool operator==(const modint& m) const { return m_val == m.val(); } constexpr bool operator!=(const modint& m) const { return not(*this == m); } friend Istream& operator>>(Istream& is, modint& m) { i64 v; return is >> v, m = v, is; } friend Ostream& operator<<(Ostream& os, const modint& m) { return os << m.val(); } constexpr u32 val() const { return m_val; } template<typename I> constexpr modint pow(I n) const { return powerInt(*this, n); } constexpr modint inv() const { return inverse<i32>(m_val, mod()); } static modint sinv(u32 n) { auto& is = sinvRef(); for (u32 i = (u32)is.size(); i <= n; i++) { is.push_back(-is[mod() % i] * (mod() / i)); } return is[n]; } static modint fact(u32 n) { auto& fs = factRef(); for (u32 i = (u32)fs.size(); i <= n; i++) { fs.push_back(fs.back() * i); } return fs[n]; } static modint ifact(u32 n) { auto& ifs = ifactRef(); for (u32 i = (u32)ifs.size(); i <= n; i++) { ifs.push_back(ifs.back() * sinv(i)); } return ifs[n]; } static modint perm(int n, int k) { return k > n or k < 0 ? modint{0} : fact(n) * ifact(n - k); } static modint comb(int n, int k) { return k > n or k < 0 ? modint{0} : fact(n) * ifact(n - k) * ifact(k); } private: static Vec<modint>& sinvRef() { static Vec<modint> is{1, 1}; return is; } static Vec<modint>& factRef() { static Vec<modint> fs{1, 1}; return fs; } static Vec<modint>& ifactRef() { static Vec<modint> ifs{1, 1}; return ifs; } static constexpr u32 norm(u32 x) { return x < mod() ? x : x - mod(); } static constexpr u32 normll(i64 x) { return norm(u32(x % (i64)mod() + (i64)mod())); } u32 m_val; }; using modint_1000000007 = modint<1000000007, 5, 1>; using modint_998244353 = modint<998244353, 3, 23>; template<int id> using modint_dynamic = modint<0, 0, id>; template<typename T = int> class Graph { struct Edge { Edge() = default; Edge(int i, int t, T c) : id{i}, to{t}, cost{c} {} int id; int to; T cost; operator int() const { return to; } }; public: Graph(int n) : m_v{n}, m_edges(n) {} void addEdge(int u, int v, bool bi = false) { assert(0 <= u and u < m_v); assert(0 <= v and v < m_v); m_edges[u].emplace_back(m_e, v, 1); if (bi) { m_edges[v].emplace_back(m_e, u, 1); } m_e++; } void addEdge(int u, int v, const T& c, bool bi = false) { assert(0 <= u and u < m_v); assert(0 <= v and v < m_v); m_edges[u].emplace_back(m_e, v, c); if (bi) { m_edges[v].emplace_back(m_e, u, c); } m_e++; } const Vec<Edge>& operator[](const int u) const { assert(0 <= u and u < m_v); return m_edges[u]; } Vec<Edge>& operator[](const int u) { assert(0 <= u and u < m_v); return m_edges[u]; } int v() const { return m_v; } int e() const { return m_e; } friend Ostream& operator<<(Ostream& os, const Graph& g) { for (int u : rep(g.v())) { for (const auto& [id, v, c] : g[u]) { os << "[" << id << "]: "; os << u << "->" << v << "(" << c << ")\n"; } } return os; } Vec<T> sizes(int root = 0) const { const int N = v(); assert(0 <= root and root < N); Vec<T> ss(N, 1); Fix([&](auto dfs, int u, int p) -> void { for ([[maybe_unused]] const auto& [_temp_name_1, v, c] : m_edges[u]) { if (v == p) { continue; } dfs(v, u); ss[u] += ss[v]; } })(root, -1); return ss; } Vec<T> depths(int root = 0) const { const int N = v(); assert(0 <= root and root < N); Vec<T> ds(N, 0); Fix([&](auto dfs, int u, int p) -> void { for ([[maybe_unused]] const auto& [_temp_name_2, v, c] : m_edges[u]) { if (v == p) { continue; } ds[v] = ds[u] + c; dfs(v, u); } })(root, -1); return ds; } Vec<int> parents(int root = 0) const { const int N = v(); assert(0 <= root and root < N); Vec<int> ps(N, -1); Fix([&](auto dfs, int u, int p) -> void { for ([[maybe_unused]] const auto& [_temp_name_3, v, c] : m_edges[u]) { if (v == p) { continue; } ps[v] = u; dfs(v, u); } })(root, -1); return ps; } private: int m_v; int m_e = 0; Vec<Vec<Edge>> m_edges; }; template<typename mint> class NumberTheoriticTransform { // DynamicModint 非対応 static_assert(not mint::isDynamic(), "class NTT: Not support dynamic modint."); private: static constexpr u32 MOD = mint::mod(); static constexpr u32 ROOT = mint::root(); static constexpr u32 L_MAX = mint::max2p(); static constexpr int N_MAX = (1 << L_MAX); public: static Vec<mint> convolute(Vec<mint> as, Vec<mint> bs) { const int AN = as.size(); const int BN = bs.size(); const int CN = AN + BN - 1; const int N = bitCeil(CN); as.resize(N, 0), bs.resize(N, 0); transform(as, false), transform(bs, false); for (int i : rep(N)) { as[i] *= bs[i]; } transform(as, true); as.resize(CN); return as; } static void transform(Vec<mint>& as, bool rev) { const int N = as.size(); assert(hasSingleBit(N)); if (N == 1) { return; } const int L = topBit(N); const auto l_range = (rev ? irange(1, L + 1, 1) : irange(L, 0, -1)); for (int l : l_range) { const int H = 1 << l; const int B = N / H; for (int b : rep(B)) { const mint W = zeta(l, rev); mint W_h = 1; for (int h : rep(H / 2)) { const int y1 = H * b + h; const int y2 = y1 + H / 2; const mint a1 = as[y1]; const mint a2 = as[y2]; const mint na1 = (rev ? a1 + a2 * W_h : a1 + a2); const mint na2 = (rev ? a1 - a2 * W_h : (a1 - a2) * W_h); as[y1] = na1; as[y2] = na2; W_h *= W; } } } if (rev) { const mint iN = mint::sinv(N); for (auto& a : as) { a *= iN; } } } private: static mint zeta(int i, bool rev) { static Vec<mint> zs; // zs[i] = 1の2^i乗根 static Vec<mint> izs; // izs[i] = zs[i]の逆元 if (zs.empty()) { zs.resize(L_MAX + 1, 1); izs.resize(L_MAX + 1, 1); zs[L_MAX] = mint(ROOT).pow((MOD - 1) / (1 << L_MAX)); izs[L_MAX] = zs[L_MAX].inv(); for (int l : per(L_MAX)) { zs[l] = zs[l + 1] * zs[l + 1]; izs[l] = izs[l + 1] * izs[l + 1]; } } return (rev ? izs[i] : zs[i]); } }; class Garner { public: template<typename mint, typename mint1, typename mint2> static mint restore_mod(const mint1& x1, const mint2& x2) { constexpr auto m1 = mint1::mod(); const auto [y0, y1] = coeff(x1, x2); return mint(y0.val()) + mint(y1.val()) * m1; } template<typename mint, typename mint1, typename mint2, typename mint3> static mint restore_mod(const mint1& x1, const mint2& x2, const mint3& x3) { constexpr auto m1 = mint1::mod(); constexpr auto m2 = mint2::mod(); const auto [y0, y1, y2] = coeff(x1, x2, x3); return mint(y0.val()) + mint(y1.val()) * m1 + mint(y2.val()) * m1 * m2; } template<typename mint1, typename mint2> static i64 restore_i64(const mint1& x1, const mint2& x2) { constexpr u32 m1 = mint1::mod(); constexpr u32 m2 = mint2::mod(); const auto [y0, y1] = coeff(x1, x2); constexpr u64 MAX = 1_u64 << 63; const i128 M = (i128)m1 * m2; i128 S = i128(y0.val()) + i128(y1.val()) * m1; if (S >= MAX) { S -= M; } return (i64)S; } template<typename mint1, typename mint2, typename mint3> static i64 restore_i64(const mint1& x1, const mint2& x2, const mint3& x3) { constexpr u32 m1 = mint1::mod(); constexpr u32 m2 = mint2::mod(); constexpr u32 m3 = mint3::mod(); const auto [y0, y1, y2] = coeff(x1, x2, x3); constexpr u64 MAX = 1_u64 << 63; const i128 M = (i128)m1 * m2 * m3; i128 S = i128(y0.val()) + i128(y1.val()) * m1 + i128(y2.val()) * m1 * m2; if (S >= MAX) { S -= M; } return (i64)S; } private: template<typename mint1, typename mint2> static Pair<mint1, mint2> coeff(const mint1& x1, const mint2& x2) { constexpr auto m1 = mint1::mod(); constexpr mint2 m1_inv = mint2(m1).inv(); const mint1 y0 = x1; const mint2 y1 = (x2 - mint2(y0.val())) * m1_inv; return {y0, y1}; } template<typename mint1, typename mint2, typename mint3> static Tup<mint1, mint2, mint3> coeff(const mint1& x1, const mint2& x2, const mint3& x3) { constexpr auto m1 = mint1::mod(); constexpr auto m2 = mint2::mod(); constexpr mint2 m1_inv = mint2(m1).inv(); constexpr mint3 m1m2_inv = (mint3(m1) * mint3(m2)).inv(); const mint1 y0 = x1; const mint2 y1 = (x2 - mint2(y0.val())) * m1_inv; const mint3 y2 = (x3 - mint3(y0.val()) - mint3(y1.val()) * m1) * m1m2_inv; return {y0, y1, y2}; } }; template<typename mint> Vec<mint> convolute_mod(const Vec<mint>& as, const Vec<mint>& bs) { constexpr u32 L_MAX = mint::max2p(); constexpr int N_MAX = (1 << L_MAX); const int AN = as.size(); const int BN = bs.size(); if (AN == 0 or BN == 0) { return {}; } if (AN > BN) { return convolute_mod(bs, as); } const int N = AN + BN - 1; if (AN * 10 <= BN) { Vec<mint> cs(N, 0); for (int sj : irange(0, BN, AN)) { const int tj = std::min(BN, sj + AN); const auto bbs = Vec<mint>(std::begin(bs) + sj, std::begin(bs) + tj); const auto bcs = convolute_mod(as, bbs); for (int dj : rep(bcs.size())) { cs[sj + dj] += bcs[dj]; } } return cs; } if (N <= N_MAX) { // mintはNTT Friendlyなのでそのまま畳み込み return NumberTheoriticTransform<mint>::convolute(as, bs); } else { assert(N <= (1 << 24)); using submint1 = modint<469762049, 3, 26>; using submint2 = modint<167772161, 3, 25>; using submint3 = modint<754974721, 11, 24>; // mod 3つでGarner復元 Vec<submint1> as1(AN), bs1(BN); Vec<submint2> as2(AN), bs2(BN); Vec<submint3> as3(AN), bs3(BN); for (int i : rep(AN)) { as1[i] = as[i].val(), as2[i] = as[i].val(), as3[i] = as[i].val(); } for (int i : rep(BN)) { bs1[i] = bs[i].val(), bs2[i] = bs[i].val(), bs3[i] = bs[i].val(); } const auto cs1 = NumberTheoriticTransform<submint1>::convolute(as1, bs1); const auto cs2 = NumberTheoriticTransform<submint2>::convolute(as2, bs2); const auto cs3 = NumberTheoriticTransform<submint3>::convolute(as3, bs3); Vec<mint> cs(N); for (int i : rep(N)) { cs[i] = Garner::restore_mod<mint>(cs1[i], cs2[i], cs3[i]); } return cs; } } template<typename I> Vec<i64> convolute_i64(const Vec<I>& as, const Vec<I>& bs) { const int AN = as.size(); const int BN = bs.size(); if (AN == 0 or BN == 0) { return {}; } if (AN > BN) { return convolute_i64<I>(bs, as); } const int N = AN + BN - 1; assert(N <= (1 << 24)); if (AN * 2 <= BN) { Vec<i64> cs(N, 0); for (int sj : irange(0, BN, AN)) { const int tj = std::min(BN, sj + AN); const auto bbs = Vec<I>(std::begin(bs) + sj, std::begin(bs) + tj); const auto bcs = convolute_i64<I>(as, bbs); for (int dj : rep(bcs.size())) { cs[sj + dj] += bcs[dj]; } } return cs; } using submint1 = modint<469762049, 3, 26>; using submint2 = modint<167772161, 3, 25>; using submint3 = modint<754974721, 11, 24>; // mod 3つでGarner復元 Vec<submint1> as1(AN), bs1(BN); Vec<submint2> as2(AN), bs2(BN); Vec<submint3> as3(AN), bs3(BN); for (int i : rep(AN)) { as1[i] = as[i], as2[i] = as[i], as3[i] = as[i]; } for (int i : rep(BN)) { bs1[i] = bs[i], bs2[i] = bs[i], bs3[i] = bs[i]; } const auto cs1 = NumberTheoriticTransform<submint1>::convolute(as1, bs1); const auto cs2 = NumberTheoriticTransform<submint2>::convolute(as2, bs2); const auto cs3 = NumberTheoriticTransform<submint3>::convolute(as3, bs3); Vec<i64> cs(N); for (int i : rep(N)) { cs[i] = Garner::restore_i64(cs1[i], cs2[i], cs3[i]); } return cs; } template<typename mint> class FormalPowerSeries : public Vec<mint> { using Vec<mint>::resize; using Vec<mint>::push_back; using Vec<mint>::pop_back; using Vec<mint>::back; public: using typename Vec<mint>::vector; FormalPowerSeries(const Vec<mint>& vs) : Vec<mint>{vs} { optimize(); } int size() const { return (int)Vec<mint>::size(); } int deg() const { return size() - 1; } template<typename I> void shrink(I n) { if (n >= (I)size()) { return; } Vec<mint>::resize(n); optimize(); } template<typename I> FormalPowerSeries low(I n) const { const I sz = std::min(n, (I)size()); return FormalPowerSeries{this->begin(), this->begin() + (int)sz}; } mint& operator[](const int n) { if (n >= size()) { resize(n + 1, 0); } return Vec<mint>::operator[](n); } template<typename I> mint at(const I n) const { return (n < size() ? (*this)[n] : mint{0}); } FormalPowerSeries operator-() const { FormalPowerSeries ans = *this; for (auto& v : ans) { v = -v; } return ans; } FormalPowerSeries& operator+=(const FormalPowerSeries& f) { for (int i : rep(f.size())) { (*this)[i] += f[i]; } return *this; } FormalPowerSeries& operator-=(const FormalPowerSeries& f) { for (int i : rep(f.size())) { (*this)[i] -= f[i]; } return *this; } FormalPowerSeries& operator*=(const FormalPowerSeries& f) { return (*this) = (*this) * f; } FormalPowerSeries& operator<<=(const int s) { return *this = (*this << s); } FormalPowerSeries& operator>>=(const int s) { return *this = (*this >> s); } FormalPowerSeries operator+(const FormalPowerSeries& f) const { return FormalPowerSeries(*this) += f; } FormalPowerSeries operator-(const FormalPowerSeries& f) const { return FormalPowerSeries(*this) -= f; } FormalPowerSeries operator*(const FormalPowerSeries& f) const { return mult(f, size() + f.size() - 1); } FormalPowerSeries operator>>(int shift) const { FormalPowerSeries ans(size() + shift); for (int i : rep(size())) { ans[i + shift] = (*this)[i]; } return ans; } FormalPowerSeries operator<<(int shift) const { FormalPowerSeries ans; for (int i : irange(shift, size())) { ans[i - shift] = (*this)[i]; } return ans; } int lsb() const { for (int i : rep(size())) { if ((*this)[i] != 0) { return i; } } return size(); } bool isZero() const { return (size() == 1) and ((*this)[0] == 0); } friend Ostream& operator<<(Ostream& os, const FormalPowerSeries& f) { return os << static_cast<Vec<mint>>(f); } FormalPowerSeries derivative() const { FormalPowerSeries ans; for (int i : irange(1, size())) { ans[i - 1] = (*this)[i] * i; } return ans; } FormalPowerSeries integral() const { FormalPowerSeries ans; for (int i : irange(1, size() + 1)) { ans[i] = (*this)[i - 1] * mint::sinv(i); } return ans; } FormalPowerSeries mult(const FormalPowerSeries& f, int size) const { assert(size > 0); return FormalPowerSeries{convolute_mod(*this, f)}.low(size); } FormalPowerSeries inv(int size) const { assert(size > 0); assert((*this)[0].val() != 0); FormalPowerSeries g{(*this)[0].inv()}; for (int m = 1; m < size; m *= 2) { auto f = low(m * 2); g = (FormalPowerSeries{2} - f.mult(g, m * 2)).mult(g, 2 * m); } return g.low(size); } FormalPowerSeries log(int size) const { assert(size > 0); assert((*this)[0] == 1); return derivative().mult(inv(size), size).integral().low(size); } FormalPowerSeries exp(int size) const { assert(size > 0); assert((*this)[0] == 0); FormalPowerSeries g{1}; for (int m = 1; m < size; m *= 2) { auto f = low(m * 2); g = g.mult(FormalPowerSeries{1} - g.log(m * 2) + f, 2 * m); } return g.low(size); } template<typename I> FormalPowerSeries pow(I n) const { return pow(n, deg() * n + 1); } template<typename I> FormalPowerSeries pow(I n, int size) const { assert(size > 0); if (n == 0) { return FormalPowerSeries{1}; } if (isZero()) { return FormalPowerSeries{0}; } const int k = lsb(); if (k >= ((I)size + n - 1) / n) { return FormalPowerSeries{}; } size -= k * n; auto f = ((*this) << k).low(size); const mint c = f[0]; f *= FormalPowerSeries{c.inv()}; return ((f.log(size) * FormalPowerSeries{n}).exp(size) * FormalPowerSeries{c.pow(n)}) >> (k * n); } private: const mint& operator[](const int n) const { assert(n < size()); return Vec<mint>::operator[](n); } void optimize() { while (size() > 0) { if (back() != 0) { return; } pop_back(); } if (size() == 0) { push_back(0); } } }; int main() { using mint = modint_998244353; using FPS = FormalPowerSeries<mint>; const auto N = in.val<int>(); const auto Ps = in.vec<mint>(N); const auto Q = in.val<int>(); for (auto _temp_name_4 [[maybe_unused]] : rep(Q)) { const auto [L, R, K] = in.tup<int, int, int>(1, 0, 0); Queue<FPS> q; for (int i : irange(L, R)) { q.push(FPS({1, Ps[i]})); } while (q.size() > 1) { const auto p1 = q.front(); q.pop(); const auto p2 = q.front(); q.pop(); q.push(p1 * p2); } out.ln(q.front()[K]); } return 0; }