結果
問題 | No.2369 Some Products |
ユーザー | koba-e964 |
提出日時 | 2023-07-01 11:37:51 |
言語 | Rust (1.77.0 + proconio) |
結果 |
AC
|
実行時間 | 565 ms / 2,500 ms |
コード長 | 6,878 bytes |
コンパイル時間 | 12,370 ms |
コンパイル使用メモリ | 378,988 KB |
実行使用メモリ | 393,216 KB |
最終ジャッジ日時 | 2024-07-07 22:13:36 |
合計ジャッジ時間 | 16,705 ms |
ジャッジサーバーID (参考情報) |
judge5 / judge2 |
(要ログイン)
テストケース
テストケース表示入力 | 結果 | 実行時間 実行使用メモリ |
---|---|---|
testcase_00 | AC | 1 ms
6,812 KB |
testcase_01 | AC | 1 ms
6,816 KB |
testcase_02 | AC | 553 ms
393,088 KB |
testcase_03 | AC | 565 ms
393,216 KB |
testcase_04 | AC | 561 ms
393,216 KB |
testcase_05 | AC | 36 ms
26,240 KB |
testcase_06 | AC | 509 ms
392,960 KB |
testcase_07 | AC | 38 ms
28,928 KB |
testcase_08 | AC | 93 ms
72,192 KB |
testcase_09 | AC | 27 ms
19,712 KB |
testcase_10 | AC | 191 ms
138,368 KB |
testcase_11 | AC | 371 ms
296,832 KB |
testcase_12 | AC | 17 ms
13,184 KB |
testcase_13 | AC | 222 ms
171,392 KB |
testcase_14 | AC | 265 ms
203,392 KB |
ソースコード
use std::io::{Write, BufWriter}; // https://qiita.com/tanakh/items/0ba42c7ca36cd29d0ac8 macro_rules! input { ($($r:tt)*) => { let stdin = std::io::stdin(); let mut bytes = std::io::Read::bytes(std::io::BufReader::new(stdin.lock())); let mut next = move || -> String{ bytes.by_ref().map(|r|r.unwrap() as char) .skip_while(|c|c.is_whitespace()) .take_while(|c|!c.is_whitespace()) .collect() }; input_inner!{next, $($r)*} }; } macro_rules! input_inner { ($next:expr) => {}; ($next:expr,) => {}; ($next:expr, $var:ident : $t:tt $($r:tt)*) => { let $var = read_value!($next, $t); input_inner!{$next $($r)*} }; } macro_rules! read_value { ($next:expr, ( $($t:tt),* )) => { ($(read_value!($next, $t)),*) }; ($next:expr, [ $t:tt ; $len:expr ]) => { (0..$len).map(|_| read_value!($next, $t)).collect::<Vec<_>>() }; ($next:expr, usize1) => (read_value!($next, usize) - 1); ($next:expr, $t:ty) => ($next().parse::<$t>().expect("Parse error")); } /// Verified by https://atcoder.jp/contests/abc198/submissions/21774342 mod mod_int { use std::ops::*; pub trait Mod: Copy { fn m() -> i64; } #[derive(Copy, Clone, Hash, PartialEq, Eq, PartialOrd, Ord)] pub struct ModInt<M> { pub x: i64, phantom: ::std::marker::PhantomData<M> } impl<M: Mod> ModInt<M> { // x >= 0 pub fn new(x: i64) -> Self { ModInt::new_internal(x % M::m()) } fn new_internal(x: i64) -> Self { ModInt { x: x, phantom: ::std::marker::PhantomData } } pub fn pow(self, mut e: i64) -> Self { debug_assert!(e >= 0); let mut sum = ModInt::new_internal(1); let mut cur = self; while e > 0 { if e % 2 != 0 { sum *= cur; } cur *= cur; e /= 2; } sum } #[allow(dead_code)] pub fn inv(self) -> Self { self.pow(M::m() - 2) } } impl<M: Mod> Default for ModInt<M> { fn default() -> Self { Self::new_internal(0) } } impl<M: Mod, T: Into<ModInt<M>>> Add<T> for ModInt<M> { type Output = Self; fn add(self, other: T) -> Self { let other = other.into(); let mut sum = self.x + other.x; if sum >= M::m() { sum -= M::m(); } ModInt::new_internal(sum) } } impl<M: Mod, T: Into<ModInt<M>>> Sub<T> for ModInt<M> { type Output = Self; fn sub(self, other: T) -> Self { let other = other.into(); let mut sum = self.x - other.x; if sum < 0 { sum += M::m(); } ModInt::new_internal(sum) } } impl<M: Mod, T: Into<ModInt<M>>> Mul<T> for ModInt<M> { type Output = Self; fn mul(self, other: T) -> Self { ModInt::new(self.x * other.into().x % M::m()) } } impl<M: Mod, T: Into<ModInt<M>>> AddAssign<T> for ModInt<M> { fn add_assign(&mut self, other: T) { *self = *self + other; } } impl<M: Mod, T: Into<ModInt<M>>> SubAssign<T> for ModInt<M> { fn sub_assign(&mut self, other: T) { *self = *self - other; } } impl<M: Mod, T: Into<ModInt<M>>> MulAssign<T> for ModInt<M> { fn mul_assign(&mut self, other: T) { *self = *self * other; } } impl<M: Mod> Neg for ModInt<M> { type Output = Self; fn neg(self) -> Self { ModInt::new(0) - self } } impl<M> ::std::fmt::Display for ModInt<M> { fn fmt(&self, f: &mut ::std::fmt::Formatter) -> ::std::fmt::Result { self.x.fmt(f) } } impl<M: Mod> ::std::fmt::Debug for ModInt<M> { fn fmt(&self, f: &mut ::std::fmt::Formatter) -> ::std::fmt::Result { let (mut a, mut b, _) = red(self.x, M::m()); if b < 0 { a = -a; b = -b; } write!(f, "{}/{}", a, b) } } impl<M: Mod> From<i64> for ModInt<M> { fn from(x: i64) -> Self { Self::new(x) } } // Finds the simplest fraction x/y congruent to r mod p. // The return value (x, y, z) satisfies x = y * r + z * p. fn red(r: i64, p: i64) -> (i64, i64, i64) { if r.abs() <= 10000 { return (r, 1, 0); } let mut nxt_r = p % r; let mut q = p / r; if 2 * nxt_r >= r { nxt_r -= r; q += 1; } if 2 * nxt_r <= -r { nxt_r += r; q -= 1; } let (x, z, y) = red(nxt_r, r); (x, y - q * z, z) } } // mod mod_int macro_rules! define_mod { ($struct_name: ident, $modulo: expr) => { #[derive(Copy, Clone, PartialEq, Eq, PartialOrd, Ord, Hash)] struct $struct_name {} impl mod_int::Mod for $struct_name { fn m() -> i64 { $modulo } } } } const MOD: i64 = 998_244_353; define_mod!(P, MOD); type MInt = mod_int::ModInt<P>; // https://yukicoder.me/problems/no/2369 (3.5) // f_i(x) = (1 + A[0]x)...(1 + A[i-1]x) として、 [x^K]f_R(x)/f_L(x) が分かれば良い。 // f_i(x) も 1/f_i(x) (を x^N までで打ち切ったもの) も合計 O(N^2) 時間で計算できる。 // [x^K]f_R(x)/f_L(x) は 1 回 O(N) 時間なので、合計 O(N^2 + QN) 時間である。 fn main() { // In order to avoid potential stack overflow, spawn a new thread. let stack_size = 104_857_600; // 100 MB let thd = std::thread::Builder::new().stack_size(stack_size); thd.spawn(|| solve()).unwrap().join().unwrap(); } fn solve() { let out = std::io::stdout(); let mut out = BufWriter::new(out.lock()); macro_rules! puts {($($format:tt)*) => (let _ = write!(out,$($format)*););} #[allow(unused)] macro_rules! putvec { ($v:expr) => { for i in 0..$v.len() { puts!("{}{}", $v[i], if i + 1 == $v.len() {"\n"} else {" "}); } } } input! { n: usize, p: [i64; n], q: usize, abk: [(usize1, usize, usize); q], } let mut f = vec![vec![MInt::new(0); n + 1]; n + 1]; let mut invf = vec![vec![MInt::new(0); n + 1]; n + 1]; f[0][0] += 1; invf[0][0] += 1; for i in 0..n { let p = MInt::new(p[i] + 2 * MOD); for k in (0..n + 1).rev() { let mut me = f[i][k]; if k > 0 { me += f[i][k - 1] * p; } f[i + 1][k] = me; } for k in 0..n + 1 { let mut me = invf[i][k]; if k > 0 { me -= invf[i + 1][k - 1] * p; } invf[i + 1][k] = me; } } for (a, b, k) in abk { let mut ans = MInt::new(0); for i in 0..k + 1 { ans += f[b][i] * invf[a][k - i]; } puts!("{}\n", ans); } }