結果
| 問題 |
No.453 製薬会社
|
| ユーザー |
|
| 提出日時 | 2023-07-07 21:39:15 |
| 言語 | C++17(gcc12) (gcc 12.3.0 + boost 1.87.0) |
| 結果 |
AC
|
| 実行時間 | 2 ms / 2,000 ms |
| コード長 | 13,117 bytes |
| コンパイル時間 | 11,884 ms |
| コンパイル使用メモリ | 350,432 KB |
| 最終ジャッジ日時 | 2025-02-15 06:58:00 |
|
ジャッジサーバーID (参考情報) |
judge1 / judge3 |
| 純コード判定しない問題か言語 |
(要ログイン)
| ファイルパターン | 結果 |
|---|---|
| sample | AC * 4 |
| other | AC * 9 |
ソースコード
#pragma region Macros
// #pragma GCC optimize("O3,unroll-loops")
// #pragma GCC target("sse,sse2,sse3,ssse3,sse4,fma,abm,mmx,avx,avx2")
#include <bits/extc++.h>
// #include <atcoder/all>
// using namespace atcoder;
using namespace std;
using namespace __gnu_pbds;
// #include <boost/multiprecision/cpp_dec_float.hpp>
// #include <boost/multiprecision/cpp_int.hpp>
// namespace mp = boost::multiprecision;
// using Bint = mp::cpp_int;
// using Bdouble = mp::number<mp::cpp_dec_float<128>>;
#define TO_STRING(var) # var
#define pb emplace_back
#define int ll
#define endl '\n'
#define sqrt __builtin_sqrtl
using ll = long long;
using ld = long double;
const ld PI = acos(-1);
const int INF = 1 << 30;
const ll INFL = 1LL << 61;
const int MOD = 998244353;
// const int MOD = 1000000007;
const ld EPS = 1e-10;
const bool equals(ld a, ld b) { return fabs((a) - (b)) < EPS; }
const vector<int> dx = {0, 1, 0, -1, 1, 1, -1, -1}; // → ↓ ← ↑ ↘ ↙ ↖ ↗
const vector<int> dy = {1, 0, -1, 0, 1, -1, -1, 1};
struct Edge {
int from, to;
int cost;
Edge(int to, int cost) : from(-1), to(to), cost(cost) {}
Edge(int from, int to, int cost) : from(from), to(to), cost(cost) {}
Edge &operator=(const int &x) {
to = x;
return *this;
}
};
__attribute__((constructor))
void constructor() {
ios::sync_with_stdio(false);
cin.tie(nullptr);
cout << fixed << setprecision(12);
}
struct custom_hash {
static uint64_t splitmix64(uint64_t x) {
x += 0x9e3779b97f4a7c15;
x = (x ^ (x >> 30)) * 0xbf58476d1ce4e5b9;
x = (x ^ (x >> 27)) * 0x94d049bb133111eb;
return x ^ (x >> 31);
}
size_t operator()(uint64_t x) const {
static const uint64_t FIXED_RANDOM = chrono::steady_clock::now().time_since_epoch().count();
return splitmix64(x + FIXED_RANDOM);
}
};
int POW(int x, int n) {
__int128_t ret = 1;
// if (ret >= INFL) return INFL;
if (n < 0) { cout << "error" << endl; return 0; }
else if (x == 1 or n == 0) ret = 1;
else if (x == -1 && n % 2 == 0) ret = 1;
else if (x == -1) ret = -1;
else if (n % 2 == 0) ret = POW(x * x, n / 2);
else ret = x * POW(x, n - 1);
if (ret > 8e18) ret = 0;
return ret;
}
int floor(int x, int y) { return (x > 0 ? x / y : (x - y + 1) / y); }
int ceil(int x, int y) { return (x > 0 ? (x + y - 1) / y : x / y); }
ll per(int x, int y) {
if (y == 0) {
cout << "error" << endl;
return INFL;
}
if (x >= 0 && y > 0) return x / y;
if (x >= 0 && y < 0) return x / y - (x % y < 0);
if (x < 0 && y < 0) return x / y + (x % y < 0);
// if (x < 0 && y > 0)
return x / y - (x % y < 0);
}
ll mod(int x, int y) {
if (y == 0) {
cout << "error" << endl;
return INFL;
}
if (x >= 0 && y > 0) return x % y;
if (x >= 0 && y < 0) return x % y;
if (x < 0 && y < 0) {
__int128_t ret = x % y;
ret += (__int128_t)abs(y) * INFL;
ret %= abs(y);
return ret;
}
// if (x < 0 && y > 0) {
__int128_t ret = x % y;
ret += (__int128_t)abs(y) * INFL;
ret %= abs(y);
return ret;
// }
}
int modf(ld x) {
if (equals(x, 0)) return 0;
else if (x < 0) return ceill(x);
else return floorl(x);
}
template <class T> bool chmax(T &a, const T& b) {
if (a < b) { a = b; return true; }
return false;
}
template <class T> bool chmin(T &a, const T& b) {
if (a > b) { a = b; return true; }
return false;
}
int countl_zero(int N) { return __builtin_clzll(N); }
int countl_one(int N) {
int ret = 0; while (N % 2) { N /= 2; ret++; }
return ret;
}
int countr_zero(int N) { return __builtin_ctzll(N); }
int countr_one(int N) {
int ret = 0, k = 63 - __builtin_clzll(N);
while (k != -1 && (N & (1LL << k))) { k--; ret++; }
return ret;
}
int popcount(int N) { return __builtin_popcountll(N); }
int unpopcount(int N) { return 64 - __builtin_clzll(N) - __builtin_popcountll(N); }
int top_bit(int N) { return 63 - __builtin_clzll(N);} // 2^kの位
int bot_bit(int N) { return __builtin_ctz(N);} // 2^kの位
int MSB(int N) { return 1 << (63 - __builtin_clzll(N)); } // mask
int bit_width(int N) { return 64 - __builtin_clzll(N); } // 桁数
int ceil_log2(int N) { return 63 - __builtin_clzll(N); }
int bit_floor(int N) { return 1 << (63 - __builtin_clzll(N)); }
int floor_log2(int N) { return 64 - __builtin_clzll(N-1); }
int bit_ceil(int N) { return 1 << (64 - __builtin_clzll(N-1)) - (N==1); }
class UnionFind {
public:
UnionFind() = default;
UnionFind(int N) : par(N), sz(N, 1) {
iota(par.begin(), par.end(), 0);
}
int root(int x) {
if (par[x] == x) return x;
return (par[x] = root(par[x]));
}
bool unite(int x, int y) {
int rx = root(x);
int ry = root(y);
if (rx == ry) return false;
if (sz[rx] < sz[ry]) swap(rx, ry);
sz[rx] += sz[ry];
par[ry] = rx;
return true;
}
bool issame(int x, int y) { return (root(x) == root(y)); }
int size(int x) { return sz[root(x)]; }
vector<vector<int>> groups(int N) {
vector<vector<int>> G(N);
for (int x = 0; x < N; x++) {
G[root(x)].push_back(x);
}
G.erase(
remove_if(G.begin(), G.end(),
[&](const vector<int>& V) { return V.empty(); }),
G.end());
return G;
}
private:
vector<int> par;
vector<int> sz;
};
template<int mod> class Modint{
public:
int val = 0;
Modint(int x = 0) { while (x < 0) x += mod; val = x % mod; }
Modint(const Modint &r) { val = r.val; }
Modint operator -() { return Modint(-val); } // 単項
Modint operator +(const Modint &r) { return Modint(*this) += r; }
Modint operator +(const int &q) { Modint r(q); return Modint(*this) += r; }
Modint operator -(const Modint &r) { return Modint(*this) -= r; }
Modint operator -(const int &q) { Modint r(q); return Modint(*this) -= r; }
Modint operator *(const Modint &r) { return Modint(*this) *= r; }
Modint operator *(const int &q) { Modint r(q); return Modint(*this) *= r; }
Modint operator /(const Modint &r) { return Modint(*this) /= r; }
Modint operator /(const int &q) { Modint r(q); return Modint(*this) /= r; }
Modint& operator ++() { val++; if (val >= mod) val -= mod; return *this; } // 前置
Modint operator ++(signed) { ++*this; return *this; } // 後置
Modint& operator --() { val--; if (val < 0) val += mod; return *this; }
Modint operator --(signed) { --*this; return *this; }
Modint &operator +=(const Modint &r) { val += r.val; if (val >= mod) val -= mod; return *this; }
Modint &operator +=(const int &q) { Modint r(q); val += r.val; if (val >= mod) val -= mod; return *this; }
Modint &operator -=(const Modint &r) { if (val < r.val) val += mod; val -= r.val; return *this; }
Modint &operator -=(const int &q) { Modint r(q); if (val < r.val) val += mod; val -= r.val; return *this; }
Modint &operator *=(const Modint &r) { val = val * r.val % mod; return *this; }
Modint &operator *=(const int &q) { Modint r(q); val = val * r.val % mod; return *this; }
Modint &operator /=(const Modint &r) {
int a = r.val, b = mod, u = 1, v = 0;
while (b) {int t = a / b; a -= t * b; swap(a, b); u -= t * v; swap(u, v);}
val = val * u % mod; if (val < 0) val += mod;
return *this;
}
Modint &operator /=(const int &q) {
Modint r(q); int a = r.val, b = mod, u = 1, v = 0;
while (b) {int t = a / b; a -= t * b; swap(a, b); u -= t * v; swap(u, v);}
val = val * u % mod; if (val < 0) val += mod;
return *this;
}
bool operator ==(const Modint& r) { return this -> val == r.val; }
bool operator <(const Modint& r) { return this -> val < r.val; }
bool operator !=(const Modint& r) { return this -> val != r.val; }
};
using mint = Modint<MOD>;
istream &operator >>(istream &is, mint& x) {
int t; is >> t;
x = t;
return (is);
}
ostream &operator <<(ostream &os, const mint& x) {
return os << x.val;
}
mint modpow(const mint &x, int n) {
if (n == 0) return 1;
mint t = modpow(x, n / 2);
t = t * t;
if (n & 1) t = t * x;
return t;
}
int modpow(__int128_t x, int n, int mod) {
__int128_t ret = 1;
while (n > 0) {
if (n % 2 == 1) ret = ret * x % mod;
x = x * x % mod;
n /= 2;
}
return ret;
}
int modinv(__int128_t x, int mod) {
if (x == 1) return 1;
return mod - modinv(mod % x, mod) * (mod / x) % mod;
}
istream &operator >>(istream &is, __int128_t& x) {
string S; is >> S;
__int128_t ret = 0;
int f = 1;
if (S[0] == '-') f = -1;
for (int i = 0; i < S.length(); i++)
if ('0' <= S[i] && S[i] <= '9')
ret = ret * 10 + S[i] - '0';
x = ret * f;
return (is);
}
ostream &operator <<(ostream &os, __int128_t x) {
ostream::sentry s(os);
if (s) {
__uint128_t tmp = x < 0 ? -x : x;
char buffer[128];
char *d = end(buffer);
do {
--d;
*d = "0123456789"[tmp % 10];
tmp /= 10;
} while (tmp != 0);
if (x < 0) {
--d;
*d = '-';
}
int len = end(buffer) - d;
if (os.rdbuf()->sputn(d, len) != len) {
os.setstate(ios_base::badbit);
}
}
return os;
}
__int128_t stoll(string &S) {
__int128_t ret = 0;
int f = 1;
if (S[0] == '-') f = -1;
for (int i = 0; i < S.length(); i++)
if ('0' <= S[i] && S[i] <= '9')
ret = ret * 10 + S[i] - '0';
return ret * f;
}
__int128_t abs(__int128_t x) {
if (x < 0) x *= -1;
return x;
}
string to_string(__int128_t x) {
string ret = "";
if (x < 0) ret += "-";
x = abs(x);
while (x) {
ret += (char)('0' + x % 10);
x /= 10;
}
reverse(ret.begin(), ret.end());
return ret;
}
string to_string(char c) {
string s = {c};
return s;
}
vector<mint> _fac, _finv, _inv;
void COMinit(int N) {
_fac.resize(N + 1);
_finv.resize(N + 1);
_inv.resize(N + 1);
_fac[0] = _fac[1] = 1;
_finv[0] = _finv[1] = 1;
_inv[1] = 1;
for (int i = 2; i <= N; i++) {
_fac[i] = _fac[i-1] * mint(i);
_inv[i] = -_inv[MOD % i] * mint(MOD / i);
_finv[i] = _finv[i - 1] * _inv[i];
}
}
mint COM(int N, int K) {
if (N < K) return 0;
if (N < 0 or K < 0) return 0;
return _fac[N] * _finv[K] * _finv[N - K];
}
#pragma endregion
vector<vector<ld>> ans;
const ld inf = 1. / 0.;
ld simplexMethodPD(ld c[], int n, ld b[], int m, ld A[]) {
ld T[m + 1][n + m + 1];
memset(T, 0, sizeof(T));
for (int j = 0; j < m; j++) {
for (int i = 0; i < n; i++) {
T[j][i] = A[j * n + i];
}
T[j][n + j] = 1;
T[j][n + m] = b[j];
}
for (int i = 0; i < n; i++) {
T[m][i] = c[i];
}
while (true) {
int p = 0, q = 0;
for (int i = 0; i < n + m; i++) {
if (T[m][i] <= T[m][p]) p = i;
}
for (int j = 0; j < m; j++) {
if (T[j][n + m] <= T[q][n + m]) q = j;
}
ld t = min(T[m][p], T[q][n + m]);
if (t >= -EPS) { // optimal
for (int i = 0; i < m + 1; i++) {
for (int j = 0; j < n + m + 1; j++) {
ans[i][j] = T[i][j];
}
}
return -T[m][n + m];
}
if (t < T[q][n + m]) { // tight on c -> primal update
for (int j = 0; j < m; j++) {
if (T[j][p] >= EPS) {
if (T[j][p] * (T[q][n + m]-t) >= T[q][p] * (T[j][n + m]-t)) q = j;
}
}
if (T[q][p] <= EPS) return inf; // primal infeasible
} else { // tight on b -> dual update
for (int i = 0; i < n + m + 1; i++) {
T[q][i] *= -1;
}
for (int i = 0; i < n + m; i++) {
if (T[q][i] >= EPS) {
if (T[q][i] * (T[m][p] - t) >= T[q][p] * (T[m][i] - t)) p = i;
}
}
if (T[q][p] <= EPS) return -inf; // dual infeasible
}
for (int i = 0; i < n + m + 1; i++) {
if (i != p) T[q][i] /= T[q][p];
}
T[q][p] = 1; // pivot(q,p)
for (int j = 0; j < m + 1; j++) {
if (j != q) {
ld alpha = T[j][p];
for (int i = 0; i < n + m + 1; i++) {
T[j][i] -= T[q][i] * alpha;
}
}
}
}
}
signed main() {
int N = 2, M = 2;
int C, D;
cin >> C >> D;
ld c[N];
c[0] = -1000, c[1] = -2000;
ld A[M * N];
ld b[M];
b[0] = C, b[1] = D;
vector<vector<ld>> V = {
{(ld)3. / 4., (ld)2. / 7.},
{(ld)1. / 4., (ld)5. / 7.}
};
for (int i = 0; i < N; i++) {
for (int j = 0; j < M; j++) {
A[j * N + i] = V[j][i];
}
}
ans.assign(M + 1, vector<ld>(N + M + 1));
cout << -simplexMethodPD(c, N, b, M, A) << endl;
}