結果

問題 No.2376 障害物競プロ
ユーザー NyaanNyaanNyaanNyaan
提出日時 2023-07-07 21:58:14
言語 C++17
(gcc 12.3.0 + boost 1.83.0)
結果
AC  
実行時間 483 ms / 4,000 ms
コード長 16,039 bytes
コンパイル時間 3,073 ms
コンパイル使用メモリ 272,816 KB
実行使用メモリ 6,948 KB
最終ジャッジ日時 2024-07-21 17:57:01
合計ジャッジ時間 53,397 ms
ジャッジサーバーID
(参考情報)
judge4 / judge1
このコードへのチャレンジ
(要ログイン)

テストケース

テストケース表示
入力 結果 実行時間
実行使用メモリ
testcase_00 AC 2 ms
6,816 KB
testcase_01 AC 1 ms
6,940 KB
testcase_02 AC 2 ms
6,940 KB
testcase_03 AC 2 ms
6,940 KB
testcase_04 AC 210 ms
6,944 KB
testcase_05 AC 300 ms
6,944 KB
testcase_06 AC 141 ms
6,940 KB
testcase_07 AC 481 ms
6,940 KB
testcase_08 AC 483 ms
6,944 KB
testcase_09 AC 467 ms
6,940 KB
testcase_10 AC 460 ms
6,944 KB
testcase_11 AC 419 ms
6,940 KB
testcase_12 AC 390 ms
6,940 KB
testcase_13 AC 454 ms
6,940 KB
testcase_14 AC 466 ms
6,944 KB
testcase_15 AC 426 ms
6,940 KB
testcase_16 AC 466 ms
6,940 KB
testcase_17 AC 397 ms
6,944 KB
testcase_18 AC 370 ms
6,948 KB
testcase_19 AC 417 ms
6,940 KB
testcase_20 AC 440 ms
6,944 KB
testcase_21 AC 427 ms
6,944 KB
testcase_22 AC 348 ms
6,940 KB
testcase_23 AC 270 ms
6,940 KB
testcase_24 AC 217 ms
6,944 KB
testcase_25 AC 112 ms
6,944 KB
testcase_26 AC 247 ms
6,944 KB
testcase_27 AC 207 ms
6,944 KB
testcase_28 AC 161 ms
6,940 KB
testcase_29 AC 108 ms
6,944 KB
testcase_30 AC 204 ms
6,944 KB
testcase_31 AC 144 ms
6,940 KB
testcase_32 AC 23 ms
6,940 KB
testcase_33 AC 82 ms
6,940 KB
testcase_34 AC 84 ms
6,944 KB
testcase_35 AC 44 ms
6,944 KB
testcase_36 AC 317 ms
6,940 KB
testcase_37 AC 305 ms
6,940 KB
testcase_38 AC 109 ms
6,940 KB
testcase_39 AC 400 ms
6,940 KB
testcase_40 AC 189 ms
6,940 KB
testcase_41 AC 98 ms
6,944 KB
testcase_42 AC 481 ms
6,940 KB
testcase_43 AC 481 ms
6,940 KB
権限があれば一括ダウンロードができます

ソースコード

diff #

/**
 * date   : 2023-07-07 21:58:09
 * author : Nyaan
 */

#define NDEBUG

using namespace std;

// intrinstic
#include <immintrin.h>

#include <algorithm>
#include <array>
#include <bitset>
#include <cassert>
#include <cctype>
#include <cfenv>
#include <cfloat>
#include <chrono>
#include <cinttypes>
#include <climits>
#include <cmath>
#include <complex>
#include <cstdarg>
#include <cstddef>
#include <cstdint>
#include <cstdio>
#include <cstdlib>
#include <cstring>
#include <deque>
#include <fstream>
#include <functional>
#include <initializer_list>
#include <iomanip>
#include <ios>
#include <iostream>
#include <istream>
#include <iterator>
#include <limits>
#include <list>
#include <map>
#include <memory>
#include <new>
#include <numeric>
#include <ostream>
#include <queue>
#include <random>
#include <set>
#include <sstream>
#include <stack>
#include <streambuf>
#include <string>
#include <tuple>
#include <type_traits>
#include <typeinfo>
#include <unordered_map>
#include <unordered_set>
#include <utility>
#include <vector>

// utility

namespace Nyaan {
using ll = long long;
using i64 = long long;
using u64 = unsigned long long;
using i128 = __int128_t;
using u128 = __uint128_t;

template <typename T>
using V = vector<T>;
template <typename T>
using VV = vector<vector<T>>;
using vi = vector<int>;
using vl = vector<long long>;
using vd = V<double>;
using vs = V<string>;
using vvi = vector<vector<int>>;
using vvl = vector<vector<long long>>;

template <typename T, typename U>
struct P : pair<T, U> {
  template <typename... Args>
  P(Args... args) : pair<T, U>(args...) {}

  using pair<T, U>::first;
  using pair<T, U>::second;

  P &operator+=(const P &r) {
    first += r.first;
    second += r.second;
    return *this;
  }
  P &operator-=(const P &r) {
    first -= r.first;
    second -= r.second;
    return *this;
  }
  P &operator*=(const P &r) {
    first *= r.first;
    second *= r.second;
    return *this;
  }
  template <typename S>
  P &operator*=(const S &r) {
    first *= r, second *= r;
    return *this;
  }
  P operator+(const P &r) const { return P(*this) += r; }
  P operator-(const P &r) const { return P(*this) -= r; }
  P operator*(const P &r) const { return P(*this) *= r; }
  template <typename S>
  P operator*(const S &r) const {
    return P(*this) *= r;
  }
  P operator-() const { return P{-first, -second}; }
};

using pl = P<ll, ll>;
using pi = P<int, int>;
using vp = V<pl>;

constexpr int inf = 1001001001;
constexpr long long infLL = 4004004004004004004LL;

template <typename T>
int sz(const T &t) {
  return t.size();
}

template <typename T, typename U>
inline bool amin(T &x, U y) {
  return (y < x) ? (x = y, true) : false;
}
template <typename T, typename U>
inline bool amax(T &x, U y) {
  return (x < y) ? (x = y, true) : false;
}

template <typename T>
inline T Max(const vector<T> &v) {
  return *max_element(begin(v), end(v));
}
template <typename T>
inline T Min(const vector<T> &v) {
  return *min_element(begin(v), end(v));
}
template <typename T>
inline long long Sum(const vector<T> &v) {
  return accumulate(begin(v), end(v), 0LL);
}

template <typename T>
int lb(const vector<T> &v, const T &a) {
  return lower_bound(begin(v), end(v), a) - begin(v);
}
template <typename T>
int ub(const vector<T> &v, const T &a) {
  return upper_bound(begin(v), end(v), a) - begin(v);
}

constexpr long long TEN(int n) {
  long long ret = 1, x = 10;
  for (; n; x *= x, n >>= 1) ret *= (n & 1 ? x : 1);
  return ret;
}

template <typename T, typename U>
pair<T, U> mkp(const T &t, const U &u) {
  return make_pair(t, u);
}

template <typename T>
vector<T> mkrui(const vector<T> &v, bool rev = false) {
  vector<T> ret(v.size() + 1);
  if (rev) {
    for (int i = int(v.size()) - 1; i >= 0; i--) ret[i] = v[i] + ret[i + 1];
  } else {
    for (int i = 0; i < int(v.size()); i++) ret[i + 1] = ret[i] + v[i];
  }
  return ret;
};

template <typename T>
vector<T> mkuni(const vector<T> &v) {
  vector<T> ret(v);
  sort(ret.begin(), ret.end());
  ret.erase(unique(ret.begin(), ret.end()), ret.end());
  return ret;
}

template <typename F>
vector<int> mkord(int N, F f) {
  vector<int> ord(N);
  iota(begin(ord), end(ord), 0);
  sort(begin(ord), end(ord), f);
  return ord;
}

template <typename T>
vector<int> mkinv(vector<T> &v) {
  int max_val = *max_element(begin(v), end(v));
  vector<int> inv(max_val + 1, -1);
  for (int i = 0; i < (int)v.size(); i++) inv[v[i]] = i;
  return inv;
}

vector<int> mkiota(int n) {
  vector<int> ret(n);
  iota(begin(ret), end(ret), 0);
  return ret;
}

template <typename T>
T mkrev(const T &v) {
  T w{v};
  reverse(begin(w), end(w));
  return w;
}

template <typename T>
bool nxp(vector<T> &v) {
  return next_permutation(begin(v), end(v));
}

// i 要素目 : [0, a[i])
vector<vector<int>> product(const vector<int> &a) {
  vector<vector<int>> ret;
  vector<int> v;
  auto dfs = [&](auto rc, int i) -> void {
    if (i == (int)a.size()) {
      ret.push_back(v);
      return;
    }
    for (int j = 0; j < a[i]; j++) v.push_back(j), rc(rc, i + 1), v.pop_back();
  };
  dfs(dfs, 0);
  return ret;
}

template <typename T>
using minpq = priority_queue<T, vector<T>, greater<T>>;

}  // namespace Nyaan


// bit operation

namespace Nyaan {
__attribute__((target("popcnt"))) inline int popcnt(const u64 &a) {
  return _mm_popcnt_u64(a);
}
inline int lsb(const u64 &a) { return a ? __builtin_ctzll(a) : 64; }
inline int ctz(const u64 &a) { return a ? __builtin_ctzll(a) : 64; }
inline int msb(const u64 &a) { return a ? 63 - __builtin_clzll(a) : -1; }
template <typename T>
inline int gbit(const T &a, int i) {
  return (a >> i) & 1;
}
template <typename T>
inline void sbit(T &a, int i, bool b) {
  if (gbit(a, i) != b) a ^= T(1) << i;
}
constexpr long long PW(int n) { return 1LL << n; }
constexpr long long MSK(int n) { return (1LL << n) - 1; }
}  // namespace Nyaan


// inout

namespace Nyaan {

template <typename T, typename U>
ostream &operator<<(ostream &os, const pair<T, U> &p) {
  os << p.first << " " << p.second;
  return os;
}
template <typename T, typename U>
istream &operator>>(istream &is, pair<T, U> &p) {
  is >> p.first >> p.second;
  return is;
}

template <typename T>
ostream &operator<<(ostream &os, const vector<T> &v) {
  int s = (int)v.size();
  for (int i = 0; i < s; i++) os << (i ? " " : "") << v[i];
  return os;
}
template <typename T>
istream &operator>>(istream &is, vector<T> &v) {
  for (auto &x : v) is >> x;
  return is;
}

istream &operator>>(istream &is, __int128_t &x) {
  string S;
  is >> S;
  x = 0;
  int flag = 0;
  for (auto &c : S) {
    if (c == '-') {
      flag = true;
      continue;
    }
    x *= 10;
    x += c - '0';
  }
  if (flag) x = -x;
  return is;
}

istream &operator>>(istream &is, __uint128_t &x) {
  string S;
  is >> S;
  x = 0;
  for (auto &c : S) {
    x *= 10;
    x += c - '0';
  }
  return is;
}

ostream &operator<<(ostream &os, __int128_t x) {
  if (x == 0) return os << 0;
  if (x < 0) os << '-', x = -x;
  string S;
  while (x) S.push_back('0' + x % 10), x /= 10;
  reverse(begin(S), end(S));
  return os << S;
}
ostream &operator<<(ostream &os, __uint128_t x) {
  if (x == 0) return os << 0;
  string S;
  while (x) S.push_back('0' + x % 10), x /= 10;
  reverse(begin(S), end(S));
  return os << S;
}

void in() {}
template <typename T, class... U>
void in(T &t, U &...u) {
  cin >> t;
  in(u...);
}

void out() { cout << "\n"; }
template <typename T, class... U, char sep = ' '>
void out(const T &t, const U &...u) {
  cout << t;
  if (sizeof...(u)) cout << sep;
  out(u...);
}

struct IoSetupNya {
  IoSetupNya() {
    cin.tie(nullptr);
    ios::sync_with_stdio(false);
    cout << fixed << setprecision(15);
    cerr << fixed << setprecision(7);
  }
} iosetupnya;

}  // namespace Nyaan


// debug


#ifdef NyaanDebug
#define trc(...) (void(0))
#else
#define trc(...) (void(0))
#endif

#ifdef NyaanLocal
#define trc2(...) (void(0))
#else
#define trc2(...) (void(0))
#endif


// macro

#define each(x, v) for (auto&& x : v)
#define each2(x, y, v) for (auto&& [x, y] : v)
#define all(v) (v).begin(), (v).end()
#define rep(i, N) for (long long i = 0; i < (long long)(N); i++)
#define repr(i, N) for (long long i = (long long)(N)-1; i >= 0; i--)
#define rep1(i, N) for (long long i = 1; i <= (long long)(N); i++)
#define repr1(i, N) for (long long i = (N); (long long)(i) > 0; i--)
#define reg(i, a, b) for (long long i = (a); i < (b); i++)
#define regr(i, a, b) for (long long i = (b)-1; i >= (a); i--)
#define fi first
#define se second
#define ini(...)   \
  int __VA_ARGS__; \
  in(__VA_ARGS__)
#define inl(...)         \
  long long __VA_ARGS__; \
  in(__VA_ARGS__)
#define ins(...)      \
  string __VA_ARGS__; \
  in(__VA_ARGS__)
#define in2(s, t)                           \
  for (int i = 0; i < (int)s.size(); i++) { \
    in(s[i], t[i]);                         \
  }
#define in3(s, t, u)                        \
  for (int i = 0; i < (int)s.size(); i++) { \
    in(s[i], t[i], u[i]);                   \
  }
#define in4(s, t, u, v)                     \
  for (int i = 0; i < (int)s.size(); i++) { \
    in(s[i], t[i], u[i], v[i]);             \
  }
#define die(...)             \
  do {                       \
    Nyaan::out(__VA_ARGS__); \
    return;                  \
  } while (0)


namespace Nyaan {
void solve();
}
int main() { Nyaan::solve(); }


//


struct Point {
  using T = __int128_t;
  T x, y;
  Point() : x(0), y(0) {}
  Point(T x_, T y_) : x(x_), y(y_) {}

  Point &operator+=(const Point &p) {
    this->x += p.x;
    this->y += p.y;
    return *this;
  }

  Point &operator-=(const Point &p) {
    this->x -= p.x;
    this->y -= p.y;
    return *this;
  }

  int pos() const {
    if (y < 0) return -1;
    if (y == 0 && 0 <= x) return 0;
    return 1;
  }

  Point operator+(const Point &p) const { return Point(*this) += p; }
  Point operator-(const Point &p) const { return Point(*this) -= p; }
  Point operator-() const { return Point(-this->x, -this->y); }
  bool operator==(const Point &p) const { return x == p.x && y == p.y; }
  bool operator!=(const Point &p) const { return x != p.x || y != p.y; }
  bool operator<(const Point &p) const { return x == p.x ? y < p.y : x < p.x; }

  friend istream &operator>>(istream &is, Point &p) {
    long long x, y;
    is >> x >> y;
    p.x = x, p.y = y;
    return is;
  }

  friend ostream &operator<<(ostream &os, const Point &p) {
    os << (long long)(p.x) << " " << (long long)(p.y);
    return os;
  }
};
using Points = vector<Point>;

Point::T dot(const Point &a, const Point &b) { return a.x * b.x + a.y * b.y; }
Point::T cross(const Point &a, const Point &b) { return a.x * b.y - a.y * b.x; }

// sort by argument (-Pi ~ Pi)
void ArgumentSort(Points &v) {
  sort(begin(v), end(v), [](Point a, Point b) {
    if (a.pos() != b.pos()) return a.pos() < b.pos();
    return cross(a, b) > 0;
  });
}

// 1 ... counterclockwise / 0 straight / -1 clockwise
int ccw(const Point &a, const Point &b, const Point &c) {
  Point::T t = cross(b - a, c - a);
  return t < 0 ? -1 : t == 0 ? 0 : 1;
}

// v must have sorted by x-coordinate
Points LowerHull(const Points &ps) {
  int N = (int)ps.size();
  for (int i = 0; i < N - 1; i++) assert(ps[i].x <= ps[i + 1].x);
  if (N <= 2) return ps;
  Points convex(N);
  int k = 0;
  for (int i = 0; i < N; convex[k++] = ps[i++]) {
    while (k >= 2 && ccw(convex[k - 2], convex[k - 1], ps[i]) <= 0) --k;
  }
  convex.resize(k);
  return convex;
}

Points UpperHull(const Points &ps) {
  int N = (int)ps.size();
  for (int i = 0; i < N - 1; i++) assert(ps[i].x <= ps[i + 1].x);
  if (N <= 2) return ps;
  Points convex(N);
  int k = 0;
  for (int i = 0; i < N; convex[k++] = ps[i++]) {
    while (k >= 2 && ccw(convex[k - 2], convex[k - 1], ps[i]) >= 0) --k;
  }
  convex.resize(k);
  return convex;
}

Points ConvexHull(const Points &ps) {
  int N = (int)ps.size();
  for (int i = 0; i < N - 1; i++) assert(ps[i].x <= ps[i + 1].x);
  if (N <= 2) return ps;
  Points convex(2 * N);
  int k = 0;
  for (int i = 0; i < N; convex[k++] = ps[i++]) {
    while (k >= 2 && ccw(convex[k - 2], convex[k - 1], ps[i]) <= 0) --k;
  }
  for (int i = N - 2, t = k + 1; i >= 0; convex[k++] = ps[i--]) {
    while (k >= t && ccw(convex[k - 2], convex[k - 1], ps[i]) <= 0) --k;
  }
  convex.resize(k - 1);
  return convex;
}

//






template <typename T>
struct edge {
  int src, to;
  T cost;

  edge(int _to, T _cost) : src(-1), to(_to), cost(_cost) {}
  edge(int _src, int _to, T _cost) : src(_src), to(_to), cost(_cost) {}

  edge &operator=(const int &x) {
    to = x;
    return *this;
  }

  operator int() const { return to; }
};
template <typename T>
using Edges = vector<edge<T>>;
template <typename T>
using WeightedGraph = vector<Edges<T>>;
using UnweightedGraph = vector<vector<int>>;

// Input of (Unweighted) Graph
UnweightedGraph graph(int N, int M = -1, bool is_directed = false,
                      bool is_1origin = true) {
  UnweightedGraph g(N);
  if (M == -1) M = N - 1;
  for (int _ = 0; _ < M; _++) {
    int x, y;
    cin >> x >> y;
    if (is_1origin) x--, y--;
    g[x].push_back(y);
    if (!is_directed) g[y].push_back(x);
  }
  return g;
}

// Input of Weighted Graph
template <typename T>
WeightedGraph<T> wgraph(int N, int M = -1, bool is_directed = false,
                        bool is_1origin = true) {
  WeightedGraph<T> g(N);
  if (M == -1) M = N - 1;
  for (int _ = 0; _ < M; _++) {
    int x, y;
    cin >> x >> y;
    T c;
    cin >> c;
    if (is_1origin) x--, y--;
    g[x].emplace_back(x, y, c);
    if (!is_directed) g[y].emplace_back(y, x, c);
  }
  return g;
}

// Input of Edges
template <typename T>
Edges<T> esgraph(int N, int M, int is_weighted = true, bool is_1origin = true) {
  Edges<T> es;
  for (int _ = 0; _ < M; _++) {
    int x, y;
    cin >> x >> y;
    T c;
    if (is_weighted)
      cin >> c;
    else
      c = 1;
    if (is_1origin) x--, y--;
    es.emplace_back(x, y, c);
  }
  return es;
}

// Input of Adjacency Matrix
template <typename T>
vector<vector<T>> adjgraph(int N, int M, T INF, int is_weighted = true,
                           bool is_directed = false, bool is_1origin = true) {
  vector<vector<T>> d(N, vector<T>(N, INF));
  for (int _ = 0; _ < M; _++) {
    int x, y;
    cin >> x >> y;
    T c;
    if (is_weighted)
      cin >> c;
    else
      c = 1;
    if (is_1origin) x--, y--;
    d[x][y] = c;
    if (!is_directed) d[y][x] = c;
  }
  return d;
}

/**
 * @brief グラフテンプレート
 * @docs docs/graph/graph-template.md
 */


// i : d[i][i] < 0 exists -> negative cycle
template <typename T>
void warshall_floyd(T& d) {
  if((int)d.size() == 0) return;
  int N = d[0].size();
  for (int i = 0; i < N; i++) d[i][i] = 0;
  for (int k = 0; k < N; k++)
    for (int i = 0; i < N; i++)
      for (int j = 0; j < N; j++) d[i][j] = min(d[i][j], d[i][k] + d[k][j]);
}

using namespace Nyaan;

void q() {
  inl(N, M);

  vl x1(N), y1(N), x2(N), y2(N);
  in4(x1, y1, x2, y2);

  VV<double> d(2 * N, V<double>(2 * N, 1e18));
  rep(i, 2 * N) d[i][i] = 0;

  V<Point> p(2 * N);
  rep(i, N) {
    p[i + 0] = {x1[i], y1[i]};
    p[i + N] = {x2[i], y2[i]};
  }

  rep(i, 2 * N) rep(j, i) {
    // p[i] -> p[j] 塞ぐ線ある?
    int ok = 1;
    rep(k, N) {
      if (i % N == k or j % N == k) continue;
      ll c1 = cross(p[j] - p[i], p[k + 0] - p[i]);
      ll c2 = cross(p[j] - p[i], p[k + N] - p[i]);
      if (c1 != 0 and c2 != 0 and ((c1 > 0) ^ (c2 > 0))) {
        ll c3 = cross(p[k] - p[k + N], p[k] - p[i]);
        ll c4 = cross(p[k] - p[k + N], p[k] - p[j]);
        if (c3 != 0 and c4 != 0 and ((c3 > 0) ^ (c4 > 0))) {
          ok = 0;
        }
      }
    }
    if (ok) {
      Point q = p[i] - p[j];
      double s = sqrtl(q.x * q.x + q.y * q.y);
      d[i][j] = d[j][i] = s;
      trc(i, j, s);
    }
  }
  warshall_floyd(d);

  rep(_, M) {
    ini(a, b, c, e);
    --a, --b, --c, --e;
    int i = a + b * N;
    int j = c + e * N;
    out(d[i][j]);
  }
}

void Nyaan::solve() {
  int t = 1;
  // in(t);
  while (t--) q();
}
0