結果
問題 | No.2376 障害物競プロ |
ユーザー | suisen |
提出日時 | 2023-07-07 22:01:23 |
言語 | C++17 (gcc 12.3.0 + boost 1.83.0) |
結果 |
RE
|
実行時間 | - |
コード長 | 41,801 bytes |
コンパイル時間 | 4,875 ms |
コンパイル使用メモリ | 343,988 KB |
実行使用メモリ | 6,948 KB |
最終ジャッジ日時 | 2024-07-21 18:01:33 |
合計ジャッジ時間 | 11,895 ms |
ジャッジサーバーID (参考情報) |
judge3 / judge4 |
(要ログイン)
テストケース
テストケース表示入力 | 結果 | 実行時間 実行使用メモリ |
---|---|---|
testcase_00 | AC | 2 ms
6,812 KB |
testcase_01 | AC | 2 ms
6,944 KB |
testcase_02 | AC | 2 ms
6,940 KB |
testcase_03 | AC | 2 ms
6,940 KB |
testcase_04 | RE | - |
testcase_05 | RE | - |
testcase_06 | RE | - |
testcase_07 | RE | - |
testcase_08 | RE | - |
testcase_09 | RE | - |
testcase_10 | RE | - |
testcase_11 | RE | - |
testcase_12 | RE | - |
testcase_13 | RE | - |
testcase_14 | RE | - |
testcase_15 | RE | - |
testcase_16 | RE | - |
testcase_17 | RE | - |
testcase_18 | RE | - |
testcase_19 | RE | - |
testcase_20 | RE | - |
testcase_21 | RE | - |
testcase_22 | RE | - |
testcase_23 | RE | - |
testcase_24 | RE | - |
testcase_25 | RE | - |
testcase_26 | RE | - |
testcase_27 | RE | - |
testcase_28 | RE | - |
testcase_29 | RE | - |
testcase_30 | RE | - |
testcase_31 | RE | - |
testcase_32 | RE | - |
testcase_33 | RE | - |
testcase_34 | RE | - |
testcase_35 | RE | - |
testcase_36 | RE | - |
testcase_37 | RE | - |
testcase_38 | RE | - |
testcase_39 | RE | - |
testcase_40 | RE | - |
testcase_41 | RE | - |
testcase_42 | RE | - |
testcase_43 | RE | - |
ソースコード
#include <bits/stdc++.h> #ifdef _MSC_VER # include <intrin.h> #else # include <x86intrin.h> #endif #include <limits> #include <type_traits> namespace suisen { // ! utility template <typename ...Types> using constraints_t = std::enable_if_t<std::conjunction_v<Types...>, std::nullptr_t>; template <bool cond_v, typename Then, typename OrElse> constexpr decltype(auto) constexpr_if(Then&& then, OrElse&& or_else) { if constexpr (cond_v) { return std::forward<Then>(then); } else { return std::forward<OrElse>(or_else); } } // ! function template <typename ReturnType, typename Callable, typename ...Args> using is_same_as_invoke_result = std::is_same<std::invoke_result_t<Callable, Args...>, ReturnType>; template <typename F, typename T> using is_uni_op = is_same_as_invoke_result<T, F, T>; template <typename F, typename T> using is_bin_op = is_same_as_invoke_result<T, F, T, T>; template <typename Comparator, typename T> using is_comparator = std::is_same<std::invoke_result_t<Comparator, T, T>, bool>; // ! integral template <typename T, typename = constraints_t<std::is_integral<T>>> constexpr int bit_num = std::numeric_limits<std::make_unsigned_t<T>>::digits; template <typename T, unsigned int n> struct is_nbit { static constexpr bool value = bit_num<T> == n; }; template <typename T, unsigned int n> static constexpr bool is_nbit_v = is_nbit<T, n>::value; // ? template <typename T> struct safely_multipliable {}; template <> struct safely_multipliable<int> { using type = long long; }; template <> struct safely_multipliable<long long> { using type = __int128_t; }; template <> struct safely_multipliable<unsigned int> { using type = unsigned long long; }; template <> struct safely_multipliable<unsigned long int> { using type = __uint128_t; }; template <> struct safely_multipliable<unsigned long long> { using type = __uint128_t; }; template <> struct safely_multipliable<float> { using type = float; }; template <> struct safely_multipliable<double> { using type = double; }; template <> struct safely_multipliable<long double> { using type = long double; }; template <typename T> using safely_multipliable_t = typename safely_multipliable<T>::type; template <typename T, typename = void> struct rec_value_type { using type = T; }; template <typename T> struct rec_value_type<T, std::void_t<typename T::value_type>> { using type = typename rec_value_type<typename T::value_type>::type; }; template <typename T> using rec_value_type_t = typename rec_value_type<T>::type; } // namespace suisen // ! type aliases using i128 = __int128_t; using u128 = __uint128_t; template <typename T> using pq_greater = std::priority_queue<T, std::vector<T>, std::greater<T>>; // ! macros (internal) #define DETAIL_OVERLOAD2(_1,_2,name,...) name #define DETAIL_OVERLOAD3(_1,_2,_3,name,...) name #define DETAIL_OVERLOAD4(_1,_2,_3,_4,name,...) name #define DETAIL_REP4(i,l,r,s) for(std::remove_reference_t<std::remove_const_t<decltype(r)>>i=(l);i<(r);i+=(s)) #define DETAIL_REP3(i,l,r) DETAIL_REP4(i,l,r,1) #define DETAIL_REP2(i,n) DETAIL_REP3(i,0,n) #define DETAIL_REPINF3(i,l,s) for(std::remove_reference_t<std::remove_const_t<decltype(l)>>i=(l);;i+=(s)) #define DETAIL_REPINF2(i,l) DETAIL_REPINF3(i,l,1) #define DETAIL_REPINF1(i) DETAIL_REPINF2(i,0) #define DETAIL_RREP4(i,l,r,s) for(std::remove_reference_t<std::remove_const_t<decltype(r)>>i=(l)+fld((r)-(l)-1,s)*(s);i>=(l);i-=(s)) #define DETAIL_RREP3(i,l,r) DETAIL_RREP4(i,l,r,1) #define DETAIL_RREP2(i,n) DETAIL_RREP3(i,0,n) #define DETAIL_CAT_I(a, b) a##b #define DETAIL_CAT(a, b) DETAIL_CAT_I(a, b) #define DETAIL_UNIQVAR(tag) DETAIL_CAT(tag, __LINE__) // ! macros #define REP(...) DETAIL_OVERLOAD4(__VA_ARGS__, DETAIL_REP4 , DETAIL_REP3 , DETAIL_REP2 )(__VA_ARGS__) #define RREP(...) DETAIL_OVERLOAD4(__VA_ARGS__, DETAIL_RREP4 , DETAIL_RREP3 , DETAIL_RREP2 )(__VA_ARGS__) #define REPINF(...) DETAIL_OVERLOAD3(__VA_ARGS__, DETAIL_REPINF3, DETAIL_REPINF2, DETAIL_REPINF1)(__VA_ARGS__) #define LOOP(n) for (std::remove_reference_t<std::remove_const_t<decltype(n)>> DETAIL_UNIQVAR(loop_variable) = n; DETAIL_UNIQVAR(loop_variable) --> 0;) #define ALL(iterable) std::begin(iterable), std::end(iterable) #define INPUT(type, ...) type __VA_ARGS__; read(__VA_ARGS__) // ! debug #ifdef LOCAL # define debug(...) debug_internal(#__VA_ARGS__, __VA_ARGS__) template <class T, class... Args> void debug_internal(const char* s, T&& first, Args&&... args) { constexpr const char* prefix = "[\033[32mDEBUG\033[m] "; constexpr const char* open_brakets = sizeof...(args) == 0 ? "" : "("; constexpr const char* close_brakets = sizeof...(args) == 0 ? "" : ")"; std::cerr << prefix << open_brakets << s << close_brakets << ": " << open_brakets << std::forward<T>(first); ((std::cerr << ", " << std::forward<Args>(args)), ...); std::cerr << close_brakets << "\n"; } #else # define debug(...) void(0) #endif // ! I/O utilities // __int128_t std::ostream& operator<<(std::ostream& dest, __int128_t value) { std::ostream::sentry s(dest); if (s) { __uint128_t tmp = value < 0 ? -value : value; char buffer[128]; char* d = std::end(buffer); do { --d; *d = "0123456789"[tmp % 10]; tmp /= 10; } while (tmp != 0); if (value < 0) { --d; *d = '-'; } int len = std::end(buffer) - d; if (dest.rdbuf()->sputn(d, len) != len) { dest.setstate(std::ios_base::badbit); } } return dest; } // __uint128_t std::ostream& operator<<(std::ostream& dest, __uint128_t value) { std::ostream::sentry s(dest); if (s) { char buffer[128]; char* d = std::end(buffer); do { --d; *d = "0123456789"[value % 10]; value /= 10; } while (value != 0); int len = std::end(buffer) - d; if (dest.rdbuf()->sputn(d, len) != len) { dest.setstate(std::ios_base::badbit); } } return dest; } // pair template <typename T, typename U> std::ostream& operator<<(std::ostream& out, const std::pair<T, U>& a) { return out << a.first << ' ' << a.second; } // tuple template <unsigned int N = 0, typename ...Args> std::ostream& operator<<(std::ostream& out, const std::tuple<Args...>& a) { if constexpr (N >= std::tuple_size_v<std::tuple<Args...>>) return out; else { out << std::get<N>(a); if constexpr (N + 1 < std::tuple_size_v<std::tuple<Args...>>) out << ' '; return operator<<<N + 1>(out, a); } } // vector template <typename T> std::ostream& operator<<(std::ostream& out, const std::vector<T>& a) { for (auto it = a.begin(); it != a.end();) { out << *it; if (++it != a.end()) out << ' '; } return out; } // array template <typename T, size_t N> std::ostream& operator<<(std::ostream& out, const std::array<T, N>& a) { for (auto it = a.begin(); it != a.end();) { out << *it; if (++it != a.end()) out << ' '; } return out; } inline void print() { std::cout << '\n'; } template <typename Head, typename... Tail> inline void print(const Head& head, const Tail &...tails) { std::cout << head; if (sizeof...(tails)) std::cout << ' '; print(tails...); } template <typename Iterable> auto print_all(const Iterable& v, std::string sep = " ", std::string end = "\n") -> decltype(std::cout << *v.begin(), void()) { for (auto it = v.begin(); it != v.end();) { std::cout << *it; if (++it != v.end()) std::cout << sep; } std::cout << end; } __int128_t stoi128(const std::string& s) { __int128_t ret = 0; for (int i = 0; i < int(s.size()); i++) if ('0' <= s[i] and s[i] <= '9') ret = 10 * ret + s[i] - '0'; if (s[0] == '-') ret = -ret; return ret; } __uint128_t stou128(const std::string& s) { __uint128_t ret = 0; for (int i = 0; i < int(s.size()); i++) if ('0' <= s[i] and s[i] <= '9') ret = 10 * ret + s[i] - '0'; return ret; } // __int128_t std::istream& operator>>(std::istream& in, __int128_t& v) { std::string s; in >> s; v = stoi128(s); return in; } // __uint128_t std::istream& operator>>(std::istream& in, __uint128_t& v) { std::string s; in >> s; v = stou128(s); return in; } // pair template <typename T, typename U> std::istream& operator>>(std::istream& in, std::pair<T, U>& a) { return in >> a.first >> a.second; } // tuple template <unsigned int N = 0, typename ...Args> std::istream& operator>>(std::istream& in, std::tuple<Args...>& a) { if constexpr (N >= std::tuple_size_v<std::tuple<Args...>>) return in; else return operator>><N + 1>(in >> std::get<N>(a), a); } // vector template <typename T> std::istream& operator>>(std::istream& in, std::vector<T>& a) { for (auto it = a.begin(); it != a.end(); ++it) in >> *it; return in; } // array template <typename T, size_t N> std::istream& operator>>(std::istream& in, std::array<T, N>& a) { for (auto it = a.begin(); it != a.end(); ++it) in >> *it; return in; } template <typename ...Args> void read(Args &...args) { (std::cin >> ... >> args); } // ! integral utilities // Returns pow(-1, n) template <typename T> constexpr inline int pow_m1(T n) { return -(n & 1) | 1; } // Returns pow(-1, n) template <> constexpr inline int pow_m1<bool>(bool n) { return -int(n) | 1; } // Returns floor(x / y) template <typename T> constexpr inline T fld(const T x, const T y) { return (x ^ y) >= 0 ? x / y : (x - (y + pow_m1(y >= 0))) / y; } template <typename T> constexpr inline T cld(const T x, const T y) { return (x ^ y) <= 0 ? x / y : (x + (y + pow_m1(y >= 0))) / y; } template <typename T, std::enable_if_t<std::negation_v<suisen::is_nbit<T, 64>>, std::nullptr_t> = nullptr> __attribute__((target("popcnt"))) constexpr inline int popcount(const T x) { return _mm_popcnt_u32(x); } template <typename T, std::enable_if_t<suisen::is_nbit_v<T, 64>, std::nullptr_t> = nullptr> __attribute__((target("popcnt"))) constexpr inline int popcount(const T x) { return _mm_popcnt_u64(x); } template <typename T, std::enable_if_t<std::negation_v<suisen::is_nbit<T, 64>>, std::nullptr_t> = nullptr> constexpr inline int count_lz(const T x) { return x ? __builtin_clz(x) : suisen::bit_num<T>; } template <typename T, std::enable_if_t<suisen::is_nbit_v<T, 64>, std::nullptr_t> = nullptr> constexpr inline int count_lz(const T x) { return x ? __builtin_clzll(x) : suisen::bit_num<T>; } template <typename T, std::enable_if_t<std::negation_v<suisen::is_nbit<T, 64>>, std::nullptr_t> = nullptr> constexpr inline int count_tz(const T x) { return x ? __builtin_ctz(x) : suisen::bit_num<T>; } template <typename T, std::enable_if_t<suisen::is_nbit_v<T, 64>, std::nullptr_t> = nullptr> constexpr inline int count_tz(const T x) { return x ? __builtin_ctzll(x) : suisen::bit_num<T>; } template <typename T> constexpr inline int floor_log2(const T x) { return suisen::bit_num<T> - 1 - count_lz(x); } template <typename T> constexpr inline int ceil_log2(const T x) { return floor_log2(x) + ((x & -x) != x); } template <typename T> constexpr inline int kth_bit(const T x, const unsigned int k) { return (x >> k) & 1; } template <typename T> constexpr inline int parity(const T x) { return popcount(x) & 1; } // ! container template <typename T, typename Comparator> auto priqueue_comp(const Comparator comparator) { return std::priority_queue<T, std::vector<T>, Comparator>(comparator); } template <typename Container> void sort_unique_erase(Container& a) { std::sort(a.begin(), a.end()); a.erase(std::unique(a.begin(), a.end()), a.end()); } template <typename InputIterator, typename BiConsumer> auto foreach_adjacent_values(InputIterator first, InputIterator last, BiConsumer f) -> decltype(f(*first++, *last), void()) { if (first != last) for (auto itr = first, itl = itr++; itr != last; itl = itr++) f(*itl, *itr); } template <typename Container, typename BiConsumer> auto foreach_adjacent_values(Container &&c, BiConsumer f) -> decltype(c.begin(), c.end(), void()) { foreach_adjacent_values(c.begin(), c.end(), f); } // ! other utilities // x <- min(x, y). returns true iff `x` has chenged. template <typename T> inline bool chmin(T& x, const T& y) { return y >= x ? false : (x = y, true); } // x <- max(x, y). returns true iff `x` has chenged. template <typename T> inline bool chmax(T& x, const T& y) { return y <= x ? false : (x = y, true); } template <typename T, std::enable_if_t<std::is_integral_v<T>, std::nullptr_t> = nullptr> std::string bin(T val, int bit_num = -1) { std::string res; if (bit_num != -1) { for (int bit = bit_num; bit-- > 0;) res += '0' + ((val >> bit) & 1); } else { for (; val; val >>= 1) res += '0' + (val & 1); std::reverse(res.begin(), res.end()); } return res; } template <typename T, std::enable_if_t<std::is_integral_v<T>, std::nullptr_t> = nullptr> std::vector<T> digits_low_to_high(T val, T base = 10) { std::vector<T> res; for (; val; val /= base) res.push_back(val % base); if (res.empty()) res.push_back(T{ 0 }); return res; } template <typename T, std::enable_if_t<std::is_integral_v<T>, std::nullptr_t> = nullptr> std::vector<T> digits_high_to_low(T val, T base = 10) { auto res = digits_low_to_high(val, base); std::reverse(res.begin(), res.end()); return res; } template <typename T> std::string join(const std::vector<T>& v, const std::string& sep, const std::string& end) { std::ostringstream ss; for (auto it = v.begin(); it != v.end();) { ss << *it; if (++it != v.end()) ss << sep; } ss << end; return ss.str(); } template <typename Func, typename Seq> auto transform_to_vector(const Func &f, const Seq &s) { std::vector<std::invoke_result_t<Func, typename Seq::value_type>> v; v.reserve(std::size(s)), std::transform(std::begin(s), std::end(s), std::back_inserter(v), f); return v; } template <typename T, typename Seq> auto copy_to_vector(const Seq &s) { std::vector<T> v; v.reserve(std::size(s)), std::copy(std::begin(s), std::end(s), std::back_inserter(v)); return v; } template <typename Seq> Seq concat(Seq s, const Seq &t) { s.reserve(std::size(s) + std::size(t)); std::copy(std::begin(t), std::end(t), std::back_inserter(s)); return s; } template <typename Seq> std::vector<Seq> split(const Seq s, typename Seq::value_type delim) { std::vector<Seq> res; for (auto itl = std::begin(s), itr = itl;; itl = ++itr) { while (itr != std::end(s) and *itr != delim) ++itr; res.emplace_back(itl, itr); if (itr == std::end(s)) return res; } } int digit_to_int(char c) { return c - '0'; } int lowercase_to_int(char c) { return c - 'a'; } int uppercase_to_int(char c) { return c - 'A'; } std::vector<int> digit_str_to_ints(const std::string &s) { return transform_to_vector(digit_to_int, s); } std::vector<int> lowercase_str_to_ints(const std::string &s) { return transform_to_vector(lowercase_to_int, s); } std::vector<int> uppercase_str_to_ints(const std::string &s) { return transform_to_vector(uppercase_to_int, s); } template <typename T, typename ToKey, typename CompareValue = std::less<>, std::enable_if_t< std::conjunction_v< std::is_invocable<ToKey, T>, std::is_invocable_r<bool, CompareValue, std::invoke_result_t<ToKey, T>, std::invoke_result_t<ToKey, T> > >, std::nullptr_t> = nullptr > auto comparator(const ToKey &to_key, const CompareValue &compare_value = std::less<>()) { return [to_key, compare_value](const T& x, const T& y) { return compare_value(to_key(x), to_key(y)); }; } template <typename ToKey, std::enable_if_t<std::is_invocable_v<ToKey, int>, std::nullptr_t> = nullptr> std::vector<int> sorted_indices(int n, const ToKey &to_key) { std::vector<int> p(n); std::iota(p.begin(), p.end(), 0); std::sort(p.begin(), p.end(), comparator<int>(to_key)); return p; } template <typename Compare, std::enable_if_t<std::is_invocable_r_v<bool, Compare, int, int>, std::nullptr_t> = nullptr> std::vector<int> sorted_indices(int n, const Compare &compare) { std::vector<int> p(n); std::iota(p.begin(), p.end(), 0); std::sort(p.begin(), p.end(), compare); return p; } const std::string Yes = "Yes", No = "No", YES = "YES", NO = "NO"; namespace suisen {} using namespace suisen; using namespace std; struct io_setup { io_setup(int precision = 20) { std::ios::sync_with_stdio(false); std::cin.tie(nullptr); std::cout << std::fixed << std::setprecision(precision); } } io_setup_ {}; // ! code from here #include <algorithm> #include <cassert> #include <complex> #include <iostream> #include <optional> #include <tuple> #include <variant> #include <vector> namespace suisen { namespace geometry { using coordinate_t = long double; using Point = std::complex<coordinate_t>; // operator Point operator+(const Point &p, coordinate_t real) { return Point(p) + Point(real, 0); } Point operator-(const Point &p, coordinate_t real) { return Point(p) - Point(real, 0); } Point operator*(const Point &p, coordinate_t real) { return Point(p) * Point(real, 0); } Point operator/(const Point &p, coordinate_t real) { return Point(p) / Point(real, 0); } Point operator+(coordinate_t real, const Point &p) { return Point(real, 0) + Point(p); } Point operator-(coordinate_t real, const Point &p) { return Point(real, 0) - Point(p); } Point operator*(coordinate_t real, const Point &p) { return Point(real, 0) * Point(p); } Point operator/(coordinate_t real, const Point &p) { return Point(real, 0) / Point(p); } std::istream& operator>>(std::istream &in, Point &p) { coordinate_t x, y; in >> x >> y; p = Point(x, y); return in; } std::ostream& operator<<(std::ostream &out, const Point &p) { return out << p.real() << ' ' << p.imag(); } // relations between three points X, Y, Z. struct ISP { static constexpr int L_CURVE = +1; // +---------------+ Z is in 'a' => ISP = +1 static constexpr int R_CURVE = -1; // |aaaaaaaaaaaaaaa| Z is in 'b' => ISP = -1 static constexpr int FRONT = +2; // |ddd X eee Y ccc| Z is in 'c' => ISP = +2 static constexpr int BACK = -2; // |bbbbbbbbbbbbbbb| Z is in 'd' => ISP = -2 static constexpr int MIDDLE = 0; // +---------------+ Z is in 'e' => ISP = 0 }; struct Sign { static constexpr int NEGATIVE = -1; static constexpr int ZERO = 0; static constexpr int POSITIVE = +1; }; enum class Containment { OUT, ON, IN }; constexpr Point ZERO = Point(0, 0); constexpr Point ONE = Point(1, 0); constexpr Point I = Point(0, 1); constexpr coordinate_t EPS = 1e-9; constexpr coordinate_t PI = 3.14159265358979323846264338327950288419716939937510L; constexpr coordinate_t E = 2.71828182845904523536028747135266249775724709369995L; constexpr auto XY_COMPARATOR = [](const Point &p, const Point &q) { return p.real() == q.real() ? p.imag() < q.imag() : p.real() < q.real(); }; constexpr auto XY_COMPARATOR_GREATER = [](const Point &p, const Point &q) { return p.real() == q.real() ? p.imag() > q.imag() : p.real() > q.real(); }; constexpr auto YX_COMPARATOR = [](const Point &p, const Point &q) { return p.imag() == q.imag() ? p.real() < q.real() : p.imag() < q.imag(); }; constexpr auto YX_COMPARATOR_GREATER = [](const Point &p, const Point &q) { return p.imag() == q.imag() ? p.real() > q.real() : p.imag() > q.imag(); }; int sgn(coordinate_t x) { return x > EPS ? Sign::POSITIVE : x < -EPS ? Sign::NEGATIVE : Sign::ZERO; } int compare(coordinate_t x, coordinate_t y) { return sgn(x - y); } auto cartesian(const coordinate_t real, const coordinate_t imag) { return Point(real, imag); } auto polar(const coordinate_t rho, const coordinate_t theta) { return Point(rho * std::cos(theta), rho * std::sin(theta)); } auto cis(const coordinate_t theta) { return Point(std::cos(theta), std::sin(theta)); } auto conj(const Point &z) { return Point(z.real(), -z.imag()); } auto arg(const Point &z) { return std::atan2(z.imag(), z.real()); } auto square_abs(const Point &z) { return z.real() * z.real() + z.imag() * z.imag(); } auto abs(const Point &z) { return std::sqrt(square_abs(z)); } auto rot(const Point &z, const coordinate_t theta) { return cis(theta) * z; } auto dot(const Point &a, const Point &b) { return a.real() * b.real() + a.imag() * b.imag(); } auto det(const Point &a, const Point &b) { return a.real() * b.imag() - a.imag() * b.real(); } bool equals(const Point &a, const Point &b) { return sgn(a.real() - b.real()) == Sign::ZERO and sgn(a.imag() - b.imag()) == Sign::ZERO; } bool equals(coordinate_t a, coordinate_t b) { return compare(a, b) == 0; } // https://judge.u-aizu.ac.jp/onlinejudge/description.jsp?id=CGL_1_C int isp(const Point &a, const Point &b, const Point &c) { Point ab = b - a, ac = c - a; int s = sgn(det(ab, ac)); if (s == Sign::POSITIVE) return ISP::L_CURVE; if (s == Sign::NEGATIVE) return ISP::R_CURVE; if (sgn(dot(ab, ac)) == Sign::NEGATIVE) return ISP::BACK; Point ba = a - b, bc = c - b; if (sgn(dot(ba, bc)) == Sign::NEGATIVE) return ISP::FRONT; return ISP::MIDDLE; } struct Line { Point a, b; Line() : Line(ZERO, ZERO) {} Line(const Point &from, const Point &to) : a(from), b(to) {} // coef_x * x + coef_y * y + cnst = 0 Line(coordinate_t coef_x, coordinate_t coef_y, coordinate_t cnst) { if (not equals(coef_x, 0.)) { a = { (coef_y - cnst) / coef_x, -1. }; b = { (-coef_y - cnst) / coef_x, +1. }; } else { a = { -1., (coef_x - cnst) / coef_y }; b = { +1., (-coef_x - cnst) / coef_y }; } } }; struct Ray { Point a, b; Ray() : Ray(ZERO, ZERO) {} Ray(const Point &from, const Point &to) : a(from), b(to) {} }; struct Segment { Point a, b; Segment() : Segment(ZERO, ZERO) {} Segment(const Point &from, const Point &to) : a(from), b(to) {} }; struct Circle { Point center; coordinate_t radius; Circle() : Circle(ZERO, 0) {} Circle(const Point &c, const coordinate_t &r) : center(c), radius(r) {} }; // Triangle coordinate_t signed_area(const Point &a, const Point &b, const Point &c) { return det(b - a, c - a) / 2; } coordinate_t area(const Point &a, const Point &b, const Point &c) { return std::abs(signed_area(a, b, c)); } Point pG(const Point &a, const Point &b, const Point &c) { return (a + b + c) / 3; } // https://judge.u-aizu.ac.jp/onlinejudge/description.jsp?id=CGL_7_B Circle pI(const Point &a, const Point &b, const Point &c) { auto la = std::abs(b - c), lb = std::abs(c - a), lc = std::abs(a - b); auto l = la + lb + lc; la /= l, lb /= l, lc /= l; Point center = la * a + lb * b + lc * c; auto radius = 2. * area(a, b, c) / l; return Circle(center, radius); } // https://judge.u-aizu.ac.jp/onlinejudge/description.jsp?id=CGL_7_C Circle pO(const Point &a, const Point &b, const Point &c) { Point ab = b - a, bc = c - b, ca = a - c; auto la = square_abs(bc), lb = square_abs(ca), lc = square_abs(ab); auto s = la * (lb + lc - la), t = lb * (lc + la - lb), u = lc * (la + lb - lc); auto l = s + t + u; s /= l, t /= l, u /= l; Point center = a * s + b * t + c * u; return Circle(center, std::abs(center - a)); } Point pH(const Point &a, const Point &b, const Point &c) { return a + b + c - 2 * pO(a, b, c).center; } auto pIabc(const Point &a, const Point &b, const Point &c) { return std::make_tuple(pI(-a, b, c), pI(a, -b, c), pI(a, b, -c)); } // Line // https://judge.u-aizu.ac.jp/onlinejudge/description.jsp?id=CGL_2_A template <typename line_t_1, typename line_t_2> auto is_parallel(const line_t_1 &l1, const line_t_2 &l2) -> decltype(l1.a, l1.b, l2.a, l2.b, bool()) { return sgn(det(l1.b - l1.a, l2.b - l2.a)) == Sign::ZERO; } // https://judge.u-aizu.ac.jp/onlinejudge/description.jsp?id=CGL_2_A template <typename line_t_1, typename line_t_2> auto is_orthogonal(const line_t_1 &l1, const line_t_2 &l2) -> decltype(l1.a, l1.b, l2.a, l2.b, bool()) { return sgn(dot(l1.b - l1.a, l2.b - l2.a)) == Sign::ZERO; } template <typename line_t_1, typename line_t_2> auto on_the_same_line(const line_t_1 &l1, const line_t_2 &l2) -> decltype(l1.a, l1.b, l2.a, l2.b, bool()) { return is_parallel(l1, l2) and sgn(det(l1.b - l1.a, l2.a - l1.a)) == Sign::ZERO; } // https://judge.u-aizu.ac.jp/onlinejudge/description.jsp?id=CGL_1_A template <typename line_t> Point projection(const Point &p, const line_t &line) { Point a = p - line.a; Point b = line.b - line.a; return line.a + dot(a, b) / square_abs(b) * b; } // https://judge.u-aizu.ac.jp/onlinejudge/description.jsp?id=CGL_1_B template <typename line_t> Point reflection(const Point &p, const line_t &line) { Point h = projection(p, line); return p + (h - p) * 2; } // https://judge.u-aizu.ac.jp/onlinejudge/description.jsp?id=CGL_2_D coordinate_t square_distance(const Point &p, const Segment &l) { Point h = projection(p, l); if (isp(l.a, l.b, h) == ISP::MIDDLE) { return square_abs(h - p); } else { return std::min(square_abs(p - l.a), square_abs(p - l.b)); } } coordinate_t square_distance(const Segment &l, const Point &p) { return square_distance(p, l); } coordinate_t square_distance(const Point &p, const Ray &l) { Point h = projection(p, l); int dir = isp(l.a, l.b, h); return dir == ISP::MIDDLE or dir == ISP::FRONT ? square_abs(h - p) : std::min(square_abs(p - l.a), square_abs(p - l.b)); } coordinate_t square_distance(const Ray &l, const Point &p) { return square_distance(p, l); } coordinate_t square_distance(const Point &p, const Line &l) { return square_abs(projection(p, l) - p); } coordinate_t square_distance(const Line &l, const Point &p) { return square_distance(p, l); } // https://judge.u-aizu.ac.jp/onlinejudge/description.jsp?id=CGL_2_D coordinate_t distance(const Point &p, const Segment &l) { return std::sqrt(square_distance(p, l)); } // https://judge.u-aizu.ac.jp/onlinejudge/description.jsp?id=CGL_2_D coordinate_t distance(const Segment &l, const Point &p) { return distance(p, l); } coordinate_t distance(const Point &p, const Ray &l) { return std::sqrt(square_distance(p, l)); } coordinate_t distance(const Ray &l, const Point &p) { return distance(p, l); } coordinate_t distance(const Point &p, const Line &l) { return std::sqrt(square_distance(p, l)); } coordinate_t distance(const Line &l, const Point &p) { return distance(p, l); } Containment contains(const Segment &l, const Point &p) { return sgn(distance(l, p)) == 0 ? Containment::ON : Containment::OUT; } Containment contains(const Ray &l, const Point &p) { return sgn(distance(l, p)) == 0 ? Containment::ON : Containment::OUT; } Containment contains(const Line &l, const Point &p) { return sgn(distance(l, p)) == 0 ? Containment::ON : Containment::OUT; } bool equals(const Line &l, const Line &m) { return on_the_same_line(l, m); } bool equals(const Ray &l, const Ray &m) { return on_the_same_line(l, m) and equals(l.a, m.a); } bool equals(const Segment &l, const Segment &m) { return (equals(l.a, m.a) and equals(l.b, m.b)) or (equals(l.a, m.b) and equals(l.b, m.a)); } // "https://judge.u-aizu.ac.jp/onlinejudge/description.jsp?id=CGL_2_B" bool has_common_point(const Segment &l1, const Segment &l2) { int isp_1a = isp(l1.a, l1.b, l2.a), isp_1b = isp(l1.a, l1.b, l2.b); if (isp_1a * isp_1b > 0) return false; int isp_2a = isp(l2.a, l2.b, l1.a), isp_2b = isp(l2.a, l2.b, l1.b); if (isp_2a * isp_2b > 0) return false; return true; } namespace internal { template <typename line_t_1, typename line_t_2> Point cross_point(const line_t_1 &l1, const line_t_2 &l2) { assert(not is_parallel(l1, l2)); Point u = l1.b - l1.a, v = l2.a - l2.b, c = l2.a - l1.a; return l2.a - det(u, c) / det(u, v) * v; } } // "https://judge.u-aizu.ac.jp/onlinejudge/description.jsp?id=CGL_2_C" std::variant<std::nullptr_t, Point, Segment> common_point(const Segment &l1, const Segment &l2) { if (not has_common_point(l1, l2)) return nullptr; if (not is_parallel(l1, l2)) return internal::cross_point(l1, l2); std::vector<Point> ps { l1.a, l1.b, l2.a, l2.b }; for (int i = 0; i <= 2; ++i) for (int j = 2; j >= i; --j) { if (XY_COMPARATOR(ps[j + 1], ps[j])) std::swap(ps[j], ps[j + 1]); } if (equals(ps[1], ps[2])) return ps[1]; return Segment(ps[1], ps[2]); } // https://judge.u-aizu.ac.jp/onlinejudge/description.jsp?id=CGL_2_D coordinate_t square_distance(const Segment &l1, const Segment &l2) { if (has_common_point(l1, l2)) return 0; return std::min({ square_distance(l1, l2.a), square_distance(l1, l2.b), square_distance(l1.a, l2), square_distance(l1.b, l2) }); } // https://judge.u-aizu.ac.jp/onlinejudge/description.jsp?id=CGL_2_D coordinate_t distance(const Segment &l1, const Segment &l2) { return std::sqrt(square_distance(l1, l2)); } // Polygon using Polygon = std::vector<Point>; // https://judge.u-aizu.ac.jp/onlinejudge/description.jsp?id=CGL_3_A coordinate_t signed_area(const Polygon &poly) { coordinate_t res = 0; int sz = poly.size(); for (int i = 0; i < sz; ++i) { int j = i + 1; if (j == sz) j = 0; res += signed_area(ZERO, poly[i], poly[j]); } return res; } // https://judge.u-aizu.ac.jp/onlinejudge/description.jsp?id=CGL_3_A auto area(const Polygon &poly) { return std::abs(signed_area(poly)); } // https://judge.u-aizu.ac.jp/onlinejudge/description.jsp?id=CGL_3_B template <bool accept_180_degree = true> bool is_convex(const Polygon &poly) { int sz = poly.size(); for (int i = 0; i < sz; ++i) { int j = i + 1, k = i + 2; if (j >= sz) j -= sz; if (k >= sz) k -= sz; int dir = isp(poly[i], poly[j], poly[k]); if constexpr (accept_180_degree) { if (dir == ISP::R_CURVE) return false; } else { if (dir != ISP::L_CURVE) return false; } } return true; } // https://judge.u-aizu.ac.jp/onlinejudge/description.jsp?id=CGL_3_C Containment contains(const Polygon &poly, const Point &p) { bool in = false; int sz = poly.size(); for (int i = 0; i < sz; ++i) { int j = i + 1; if (j == sz) j -= sz; Point a = poly[i] - p, b = poly[j] - p; if (a.imag() > b.imag()) std::swap(a, b); if (sgn(a.imag()) <= 0 and sgn(b.imag()) > 0 and sgn(det(a, b)) < 0) in = not in; if (sgn(det(a, b)) == 0 and sgn(dot(a, b)) <= 0) return Containment::ON; } return in ? Containment::IN : Containment::OUT; } // https://judge.u-aizu.ac.jp/onlinejudge/description.jsp?id=CGL_4_B std::tuple<int, int, coordinate_t> convex_diameter(const Polygon& convex) { const int sz = convex.size(); if (sz <= 2) return { 0, sz - 1, abs(convex.front() - convex.back()) }; auto [si, sj] = [&]{ auto [it_min, it_max] = std::minmax_element(convex.begin(), convex.end(), XY_COMPARATOR); return std::pair<int, int> { it_min - convex.begin(), it_max - convex.begin() }; }(); coordinate_t max_dist = -1; std::pair<int, int> argmax{ -1, -1 }; for (int i = si, j = sj; i != sj or j != si;) { if (coordinate_t dij = square_abs(convex[j] - convex[i]); dij > max_dist) max_dist = dij, argmax = { i, j }; int ni = (i + 1) % sz, nj = (j + 1) % sz; if (det(convex[ni] - convex[i], convex[nj] - convex[j]) < 0) i = ni; else j = nj; } return { argmax.first, argmax.second, ::sqrtl(max_dist) }; } // https://judge.u-aizu.ac.jp/onlinejudge/description.jsp?id=CGL_4_C auto convex_cut(const Polygon &convex, const Line &l) { Polygon res; int sz = convex.size(); for (int i = 0; i < sz; ++i) { int j = i + 1; if (j == sz) j -= sz; const Point &a = convex[i], &b = convex[j]; int da = sgn(det(l.b - l.a, a - l.a)); if (da >= 0) res.push_back(a); int db = sgn(det(l.b - l.a, b - l.a)); if (da * db < 0) res.push_back(internal::cross_point(l, Segment(a, b))); } return res; } // Circle // https://judge.u-aizu.ac.jp/onlinejudge/description.jsp?id=CGL_7_A int tangent_num(const Circle &c1, const Circle &c2) { coordinate_t r1 = c1.radius, r2 = c2.radius; if (r1 > r2) return tangent_num(c2, c1); coordinate_t d = abs(c1.center - c2.center); int cp = compare(d, r1 + r2); if (cp > 0) return 4; if (cp == 0) return 3; int cn = compare(d, r2 - r1); if (cn > 0) return 2; if (cn == 0) return 1; return 0; } // https://judge.u-aizu.ac.jp/onlinejudge/description.jsp?id=CGL_7_D std::vector<Point> common_point(const Circle &c, const Line &l) { Point h = projection(c.center, l); coordinate_t d = abs(c.center - h); int cp = compare(d, c.radius); if (cp > 0) return {}; if (cp == 0) return { h }; auto v = (l.a - l.b) * (std::sqrt(c.radius * c.radius - d * d) / abs(l.a - l.b)); return { h - v, h + v }; } // https://judge.u-aizu.ac.jp/onlinejudge/description.jsp?id=CGL_7_H std::vector<Point> common_point(const Circle &c, const Segment &l) { auto ps = common_point(c, Line(l.a, l.b)); ps.erase(std::remove_if(ps.begin(), ps.end(), [&](const auto &p) { return contains(l, p) != Containment::ON; }), ps.end()); return ps; } // https://judge.u-aizu.ac.jp/onlinejudge/description.jsp?id=CGL_7_E std::vector<Point> common_point(const Circle &c1, const Circle &c2) { coordinate_t r1 = c1.radius, r2 = c2.radius; if (r1 > r2) return common_point(c2, c1); coordinate_t d = abs(c1.center - c2.center); int cp = compare(d, r1 + r2), cn = compare(d, r2 - r1); if (cp > 0 or cn < 0) return {}; auto v = c1.center - c2.center; coordinate_t lv = abs(v); if (cp == 0 or cn == 0) { return { c2.center + v * (r2 / lv) }; } coordinate_t lp = d, ln = (r2 * r2 - r1 * r1) / d; coordinate_t p = (lp + ln) / 2, x = sqrt(r2 * r2 - p * p); auto h = c2.center + v * (p / lv); auto t = v * I; return { h + t * (x / lv), h - t * (x / lv) }; } // https://judge.u-aizu.ac.jp/onlinejudge/description.jsp?id=CGL_7_F Containment contains(const Circle &c, const Point &p) { coordinate_t d = abs(c.center - p); int cp = compare(d, c.radius); if (cp > 0) return Containment::OUT; if (cp < 0) return Containment::IN; return Containment::ON; } // https://judge.u-aizu.ac.jp/onlinejudge/description.jsp?id=CGL_7_F std::vector<Point> tangent_to_circle(const Circle &c, const Point &p) { Containment cnt = contains(c, p); if (cnt == Containment::IN) return {}; if (cnt == Containment::ON) return { p }; auto v = c.center - p; coordinate_t r = c.radius, d = abs(v), l = sqrt(d * d - r * r); coordinate_t t = std::asin(r / d); return { p + rot(v, t) * (l / d), p + rot(v, -t) * (l / d) }; } // https://judge.u-aizu.ac.jp/onlinejudge/description.jsp?id=CGL_7_G // returns { Line(p, q) | p is on c1, q is on c2, Line(p, q) is common tangent of c1 and c2 } std::vector<Line> common_tangent(const Circle &c1, const Circle &c2) { int num = tangent_num(c1, c2); std::vector<Line> res; if (num == 0) return res; Point a = c1.center, b = c2.center, v = b - a; coordinate_t r1 = c1.radius, r2 = c2.radius; coordinate_t rp = r1 + r2, rm = r1 - r2, rd = r2 / r1; coordinate_t sqxy = square_abs(v); coordinate_t rtp = std::sqrt(std::max(sqxy - rp * rp, coordinate_t(0))); coordinate_t rtm = std::sqrt(std::max(sqxy - rm * rm, coordinate_t(0))); Point r = v * r1, u = r * Point(0, 1); Point l12 = r * rp, r12 = u * rtp, l34 = r * rm, r34 = u * rtm; Point p14 = (l34 + r34) / sqxy; res.emplace_back(a + p14, b + p14 * rd); if (num == 1) return res; Point p13 = (l34 - r34) / sqxy; res.emplace_back(a + p13, b + p13 * rd); if (num == 2) return res; Point p12 = (l12 + r12) / sqxy; res.emplace_back(a + p12, b - p12 * rd); if (num == 3) return res; Point p11 = (l12 - r12) / sqxy; res.emplace_back(a + p11, b - p11 * rd); return res; } // https://judge.u-aizu.ac.jp/onlinejudge/description.jsp?id=CGL_7_H coordinate_t intersection_area(const Polygon &poly, const Circle &circle) { int sz = poly.size(); coordinate_t r2 = circle.radius * circle.radius; const Point &c = circle.center; coordinate_t area = 0; for (int i = 0; i < sz; i++) { int j = i + 1; if (j >= sz) j -= sz; Point a = poly[i], b = poly[j]; bool in_a = contains(circle, a) == Containment::IN, in_b = contains(circle, b) == Containment::IN; Point ca = a - c, cb = b - c; if (in_a and in_b) { area += det(ca, cb); continue; } std::vector<Point> ps = common_point(circle, Segment(a, b)); if (ps.empty()) { area += r2 * arg(cb / ca); } else { Point s = ps[0]; Point t = ps.size() == 1 ? s : ps[1]; if (compare(square_abs(t - a), square_abs(s - a)) < 0) std::swap(s, t); Point cs = s - c, ct = t - c; area += det(cs, ct); area += in_a ? det(ca, cs) : r2 * arg(cs / ca); area += in_b ? det(ct, cb) : r2 * arg(cb / ct); } } return area / 2; } // https://judge.u-aizu.ac.jp/onlinejudge/description.jsp?id=CGL_7_I coordinate_t intersection_area(const Circle &c1, const Circle &c2) { coordinate_t r = c1.radius, s = c2.radius; if (r < s) return intersection_area(c2, c1); Point a = c1.center, b = c2.center; coordinate_t d = abs(a - b); if (compare(d, r + s) >= 0) return 0; if (compare(d, r - s) <= 0) return PI * s * s; coordinate_t x = (d * d + r * r - s * s) / (2 * d); coordinate_t h = std::sqrt(std::max(r * r - x * x, coordinate_t(0))); coordinate_t a1 = r * r * std::acos(x / r); coordinate_t a2 = s * s * std::acos((d - x) / s); coordinate_t a12 = d * h; return a1 + a2 - a12; } } } // namespace suisen using namespace geometry; constexpr coordinate_t inf = 1e100; int main() { int n, m; read(n, m); vector<array<Point, 2>> points(n); for (auto &[p, q] : points) { coordinate_t x1, y1, x2, y2; read(x1, y1, x2, y2); p = { x1, y1 }; q = { x2, y2 }; } vector<array<int, 4>> st(n); REP(i, m) { int a, b, c, d; read(a, b, c, d); --a, --b, --c, --d; st[i] = { a, b, c, d }; } vector<vector<coordinate_t>> g(2 * n, vector<coordinate_t>(2 * n, inf)); REP(i, n) REP(ti, 2) { REP(j, n) REP(tj, 2) { Point x = points[i][ti]; Point y = points[j][tj]; Segment l1 { x, y }; bool ok = true; REP(k, n) if (k != i and k != j) { Segment l2{ points[k][0], points[k][1] }; if (has_common_point(l1, l2)) { ok = false; break; } } if (ok) { int fr = ti * n + i; int to = tj * n + j; coordinate_t dist = abs(x - y); g[fr][to] = dist; } } } REP(k, 2 * n) REP(i, 2 * n) REP(j, 2 * n) { chmin(g[i][j], g[i][k] + g[k][j]); } REP(qi, m) { auto [i, ti, j, tj] = st[qi]; print(g[ti * n + i][tj * n + j]); } return 0; }