結果

問題 No.2374 ASKT Subsequences
ユーザー ecotteaecottea
提出日時 2023-07-07 22:24:51
言語 C++17
(gcc 13.3.0 + boost 1.87.0)
結果
AC  
実行時間 65 ms / 2,000 ms
コード長 10,957 bytes
コンパイル時間 4,302 ms
コンパイル使用メモリ 258,676 KB
最終ジャッジ日時 2025-02-15 07:45:27
ジャッジサーバーID
(参考情報)
judge4 / judge2
このコードへのチャレンジ
(要ログイン)
ファイルパターン 結果
sample AC * 3
other AC * 28
権限があれば一括ダウンロードができます

ソースコード

diff #
プレゼンテーションモードにする

#ifndef HIDDEN_IN_VS //
//
#define _CRT_SECURE_NO_WARNINGS
//
#include <bits/stdc++.h>
using namespace std;
//
using ll = long long; // -2^63 2^63 = 9 * 10^18int -2^31 2^31 = 2 * 10^9
using pii = pair<int, int>; using pll = pair<ll, ll>; using pil = pair<int, ll>; using pli = pair<ll, int>;
using vi = vector<int>; using vvi = vector<vi>; using vvvi = vector<vvi>;
using vl = vector<ll>; using vvl = vector<vl>; using vvvl = vector<vvl>;
using vb = vector<bool>; using vvb = vector<vb>; using vvvb = vector<vvb>;
using vc = vector<char>; using vvc = vector<vc>; using vvvc = vector<vvc>;
using vd = vector<double>; using vvd = vector<vd>; using vvvd = vector<vvd>;
template <class T> using priority_queue_rev = priority_queue<T, vector<T>, greater<T>>;
using Graph = vvi;
//
const double PI = acos(-1);
const vi DX = { 1, 0, -1, 0 }; // 4
const vi DY = { 0, 1, 0, -1 };
int INF = 1001001001; ll INFL = 4004004003104004004LL; // (int)INFL = 1010931620;
double EPS = 1e-15;
//
struct fast_io { fast_io() { cin.tie(nullptr); ios::sync_with_stdio(false); cout << fixed << setprecision(18); } } fastIOtmp;
//
#define all(a) (a).begin(), (a).end()
#define sz(x) ((int)(x).size())
#define lbpos(a, x) (int)distance((a).begin(), std::lower_bound(all(a), x))
#define ubpos(a, x) (int)distance((a).begin(), std::upper_bound(all(a), x))
#define Yes(b) {cout << ((b) ? "Yes\n" : "No\n");}
#define YES(b) {cout << ((b) ? "YES\n" : "NO\n");}
#define rep(i, n) for(int i = 0, i##_len = int(n); i < i##_len; ++i) // 0 n-1
#define repi(i, s, t) for(int i = int(s), i##_end = int(t); i <= i##_end; ++i) // s t
#define repir(i, s, t) for(int i = int(s), i##_end = int(t); i >= i##_end; --i) // s t
#define repe(v, a) for(const auto& v : (a)) // a
#define repea(v, a) for(auto& v : (a)) // a
#define repb(set, d) for(int set = 0; set < (1 << int(d)); ++set) // d
#define repp(a) sort(all(a)); for(bool a##_perm = true; a##_perm; a##_perm = next_permutation(all(a))) // a
#define smod(n, m) ((((n) % (m)) + (m)) % (m)) // mod
#define uniq(a) {sort(all(a)); (a).erase(unique(all(a)), (a).end());} //
#define EXIT(a) {cout << (a) << endl; exit(0);} //
#define inQ(x, y, u, l, d, r) ((u) <= (x) && (l) <= (y) && (x) < (d) && (y) < (r)) //
//
template <class T> inline ll pow(T n, int k) { ll v = 1; rep(i, k) v *= n; return v; }
template <class T> inline bool chmax(T& M, const T& x) { if (M < x) { M = x; return true; } return false; } // true
    
template <class T> inline bool chmin(T& m, const T& x) { if (m > x) { m = x; return true; } return false; } // true
    
template <class T> inline T get(T set, int i) { return (set >> i) & T(1); }
//
template <class T, class U> inline istream& operator>>(istream& is, pair<T, U>& p) { is >> p.first >> p.second; return is; }
template <class T> inline istream& operator>>(istream& is, vector<T>& v) { repea(x, v) is >> x; return is; }
template <class T> inline vector<T>& operator--(vector<T>& v) { repea(x, v) --x; return v; }
template <class T> inline vector<T>& operator++(vector<T>& v) { repea(x, v) ++x; return v; }
#endif //
#if __has_include(<atcoder/all>)
#include <atcoder/all>
using namespace atcoder;
#ifdef _MSC_VER
#include "localACL.hpp"
#endif
//using mint = modint1000000007;
using mint = modint998244353;
//using mint = modint; // mint::set_mod(m);
namespace atcoder {
inline istream& operator>>(istream& is, mint& x) { ll x_; is >> x_; x = x_; return is; }
inline ostream& operator<<(ostream& os, const mint& x) { os << x.val(); return os; }
}
using vm = vector<mint>; using vvm = vector<vm>; using vvvm = vector<vvm>;
#endif
#ifdef _MSC_VER // Visual Studio
#include "local.hpp"
#else // gcc
inline int popcount(int n) { return __builtin_popcount(n); }
inline int popcount(ll n) { return __builtin_popcountll(n); }
inline int lsb(int n) { return n != 0 ? __builtin_ctz(n) : -1; }
inline int lsb(ll n) { return n != 0 ? __builtin_ctzll(n) : -1; }
inline int msb(int n) { return n != 0 ? (31 - __builtin_clz(n)) : -1; }
inline int msb(ll n) { return n != 0 ? (63 - __builtin_clzll(n)) : -1; }
#define gcd __gcd
#define dump(...)
#define dumpel(v)
#define dump_list(v)
#define dump_mat(v)
#define input_from_file(f)
#define output_to_file(f)
#define Assert(b) { if (!(b)) while (1) cout << "OLE"; }
#endif
//
/*
* Fenwick_tree_2D<S, op, o, inv>(int h, int w) : O(h w)
* h * w o
* (S, op, o, inv)
*
* Fenwick_tree_2D<S, op, o, inv>(vvS a) : O(h w)
* a
*
* apply(int x, int y, S val) : O(log h log w)
* v[x][y] = op(v[x][y], val)
*
* set(int x, int y, S val) : O(log h log w)
* v[x][y] = val
*
* S get(int x, int y) : O(log h log w)
* v[x][y]
*
* S prod(int x1, int y1, int x2, int y2) : O(log h log w)
* op( v[x1..x2)[y1..y2) ) o()
*/
template <class S, S(*op)(S, S), S(*o)(), S(*inv)(S)>
struct Fenwick_tree_2D {
// https://algo-logic.info/binary-indexed-tree/
// + 1
int h, w;
// v[x][y] : op( [*..x][*..y] ) x, y 1-indexedv[0][*], v[*][0] 使
vector<vector<S>> v;
// op( v[1..x][1..y] ) o x, y : 1-indexed
S prod_sub(int x, int y) const {
S res = o();
// op()
// i, j 1
for (int i = x; i > 0; i -= i & -i) {
for (int j = y; j > 0; j -= j & -j) {
res = op(res, v[i][j]);
}
}
return res;
}
// h * w o
Fenwick_tree_2D(int h_, int w_) : h(h_ + 1), w(w_ + 1), v(h, vector<S>(w, o())) {
// verify : https://onlinejudge.u-aizu.ac.jp/problems/2842
}
// a
Fenwick_tree_2D(const vector<vector<S>>& v_) : h(sz(v_) + 1), w(sz(v_[0]) + 1),
v(h, vector<S>(w, o())) {
//
rep(i, h - 1) {
rep(j, w - 1) {
v[i + 1][j + 1] = v_[i][j];
}
}
// op()
// j
repi(i, 1, h - 1) {
for (int pow2 = 1; 2 * pow2 < w; pow2 *= 2) {
for (int j = 2 * pow2; j < w; j += 2 * pow2) {
v[i][j] = op(v[i][j], v[i][j - pow2]);
}
}
}
// i
repi(j, 1, w - 1) {
for (int pow2 = 1; 2 * pow2 < h; pow2 *= 2) {
for (int i = 2 * pow2; i < h; i += 2 * pow2) {
v[i][j] = op(v[i][j], v[i - pow2][j]);
}
}
}
}
Fenwick_tree_2D() {} //
// v[x][y] = val x, y : 0-indexed
void set(int x, int y, S val) {
//
S d = op(val, inv(get(x, y)));
apply(x, y, d);
}
// v[x][y] x, y : 0-indexed
S get(int x, int y) const {
return prod(x, y, x + 1, y + 1);
}
// op( v[x1..x2)[y1..y2) ) o x1, y1, x2, y2 : 0-indexed
S prod(int x1, int y1, int x2, int y2) const {
// verify : https://onlinejudge.u-aizu.ac.jp/problems/2842
// 0-indexed [x1..x2) * [y1..y2)
// 1-indexed [x1+1..x2] * [y1+1..y2]
S res = o();
res = op(res, prod_sub(x2, y2));
res = op(res, inv(prod_sub(x2, y1)));
res = op(res, inv(prod_sub(x1, y2)));
res = op(res, prod_sub(x1, y1));
return res;
}
// v[x][y] = op(v[x][y], val) x, y : 0-indexed
void apply(int x, int y, S val) {
// verify : https://onlinejudge.u-aizu.ac.jp/problems/2842
// x, y 1-indexed
x++; y++;
// op()
// i, j 1
for (int i = x; i < h; i += i & -i) {
for (int j = y; j < w; j += j & -j) {
v[i][j] = op(v[i][j], val);
}
}
}
#ifdef _MSC_VER
friend ostream& operator<<(ostream& os, const Fenwick_tree_2D& ft) {
rep(x, ft.h - 1) {
rep(y, ft.w - 1) {
os << ft.get(x, y) << " ";
}
cout << "\n";
}
return os;
}
#endif
};
//
/* verify : https://atcoder.jp/contests/aising2019/tasks/aising2019_d */
using S601 = ll;
S601 op601(S601 a, S601 b) { return a + b; }
S601 e601() { return 0; }
S601 inv601(S601 a) { return -a; }
#define Add_group S601, op601, e601, inv601
ll solve(int n, vi a) {
int m = 2000; dump(m = 20);
vector<vector<pii>> lr(m), LR(m);
rep(l, n) repi(r, l + 1, n - 1) {
if (a[r] - a[l] == 10) lr[a[l]].push_back({ l, r });
else if (a[r] - a[l] == 1) LR[a[l]].push_back({ l, r });
}
// dumpel(lr); dumpel(LR);
Fenwick_tree_2D<Add_group> fen(n, n);
ll res = 0;
rep(j, m + 11) {
dump("---");
if (j - 11 >= 0) {
dump("lr:", j - 11);
for (auto [l, r] : lr[j - 11]) {
fen.apply(l, r, 1);
}
}
if (j < m) {
dump("LR:", j);
for (auto [L, R] : LR[j]) {
res += fen.prod(0, L + 1, L, R);
}
}
// dump(fen);
}
return res;
}
ll naive(int n, vi a) {
ll res = 0;
repi(i1, 0, n - 1) repi(i2, i1 + 1, n - 1) repi(i3, i2 + 1, n - 1) repi(i4, i3 + 1, n - 1) {
repi(k, 1, 100) {
if (a[i2] == a[i1] + (k + 10) && a[i3] == a[i2] - k && a[i4] == a[i3] + (k + 1)) {
res++;
}
}
}
return res;
}
void bug_find() {
#ifdef _MSC_VER
//
mt19937_64 mt;
mt.seed((int)time(NULL));
uniform_int_distribution<ll> rnd(0LL, 1LL << 62);
mute_dump = true;
rep(hoge, 10000) {
int n = rnd(mt) % 5 + 4;
vi a(n);
rep(i, n) a[i] = rnd(mt) % 20;
auto res_naive = naive(n, a);
auto res_solve = solve(n, a);
if (res_naive != res_solve) {
cout << "----------error!----------" << endl;
cout << "input:" << endl;
cout << n << endl;
cout << a << endl;
cout << "results:" << endl;
cout << res_naive << endl;
cout << res_solve << endl;
cout << "--------------------------" << endl;
}
}
mute_dump = false;
exit(0);
#endif
}
/*
----------error!----------
input:
6
5 7 15 17 14 16
results:
0
1
--------------------------
*/
int main() {
input_from_file("input.txt");
// output_to_file("output.txt");
bug_find();
int n;
cin >> n;
vi a(n);
cin >> a;
--a;
dump(naive(n, a)); dump("-----");
cout << solve(n, a) << endl;
}
הההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההה
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
0