結果
問題 | No.2376 障害物競プロ |
ユーザー | stoq |
提出日時 | 2023-07-07 22:41:20 |
言語 | C++17 (gcc 12.3.0 + boost 1.83.0) |
結果 |
AC
|
実行時間 | 515 ms / 4,000 ms |
コード長 | 25,817 bytes |
コンパイル時間 | 6,352 ms |
コンパイル使用メモリ | 302,704 KB |
実行使用メモリ | 6,944 KB |
最終ジャッジ日時 | 2024-07-21 18:59:24 |
合計ジャッジ時間 | 69,023 ms |
ジャッジサーバーID (参考情報) |
judge5 / judge4 |
(要ログイン)
テストケース
テストケース表示入力 | 結果 | 実行時間 実行使用メモリ |
---|---|---|
testcase_00 | AC | 8 ms
6,812 KB |
testcase_01 | AC | 9 ms
6,940 KB |
testcase_02 | AC | 8 ms
6,944 KB |
testcase_03 | AC | 8 ms
6,944 KB |
testcase_04 | AC | 260 ms
6,944 KB |
testcase_05 | AC | 356 ms
6,940 KB |
testcase_06 | AC | 147 ms
6,944 KB |
testcase_07 | AC | 403 ms
6,940 KB |
testcase_08 | AC | 403 ms
6,940 KB |
testcase_09 | AC | 382 ms
6,940 KB |
testcase_10 | AC | 388 ms
6,940 KB |
testcase_11 | AC | 317 ms
6,944 KB |
testcase_12 | AC | 275 ms
6,940 KB |
testcase_13 | AC | 398 ms
6,940 KB |
testcase_14 | AC | 396 ms
6,944 KB |
testcase_15 | AC | 383 ms
6,944 KB |
testcase_16 | AC | 395 ms
6,944 KB |
testcase_17 | AC | 298 ms
6,940 KB |
testcase_18 | AC | 264 ms
6,940 KB |
testcase_19 | AC | 395 ms
6,940 KB |
testcase_20 | AC | 423 ms
6,940 KB |
testcase_21 | AC | 418 ms
6,944 KB |
testcase_22 | AC | 345 ms
6,944 KB |
testcase_23 | AC | 216 ms
6,940 KB |
testcase_24 | AC | 274 ms
6,944 KB |
testcase_25 | AC | 134 ms
6,940 KB |
testcase_26 | AC | 311 ms
6,940 KB |
testcase_27 | AC | 265 ms
6,944 KB |
testcase_28 | AC | 141 ms
6,944 KB |
testcase_29 | AC | 135 ms
6,940 KB |
testcase_30 | AC | 111 ms
6,940 KB |
testcase_31 | AC | 154 ms
6,944 KB |
testcase_32 | AC | 25 ms
6,940 KB |
testcase_33 | AC | 56 ms
6,940 KB |
testcase_34 | AC | 78 ms
6,940 KB |
testcase_35 | AC | 59 ms
6,940 KB |
testcase_36 | AC | 230 ms
6,940 KB |
testcase_37 | AC | 334 ms
6,940 KB |
testcase_38 | AC | 124 ms
6,944 KB |
testcase_39 | AC | 310 ms
6,944 KB |
testcase_40 | AC | 77 ms
6,940 KB |
testcase_41 | AC | 123 ms
6,940 KB |
testcase_42 | AC | 515 ms
6,944 KB |
testcase_43 | AC | 506 ms
6,940 KB |
ソースコード
#define MOD_TYPE 1 #include <bits/stdc++.h> using namespace std; #include <atcoder/all> // #include <atcoder/lazysegtree> // #include <atcoder/modint> // #include <atcoder/segtree> using namespace atcoder; #if 0 #include <boost/multiprecision/cpp_dec_float.hpp> #include <boost/multiprecision/cpp_int.hpp> using Int = boost::multiprecision::cpp_int; using lld = boost::multiprecision::cpp_dec_float_100; #endif #if 0 #include <ext/pb_ds/assoc_container.hpp> #include <ext/pb_ds/tag_and_trait.hpp> #include <ext/pb_ds/tree_policy.hpp> #include <ext/rope> using namespace __gnu_pbds; using namespace __gnu_cxx; template <typename T> using extset = tree<T, null_type, less<T>, rb_tree_tag, tree_order_statistics_node_update>; #endif #if 0 #pragma GCC target("avx2") #pragma GCC optimize("O3") #pragma GCC optimize("unroll-loops") #endif #pragma region Macros using ll = long long int; using ld = long double; using pii = pair<int, int>; using pll = pair<ll, ll>; using pld = pair<ld, ld>; template <typename Q_type> using smaller_queue = priority_queue<Q_type, vector<Q_type>, greater<Q_type>>; #if MOD_TYPE == 1 constexpr ll MOD = ll(1e9 + 7); #else #if MOD_TYPE == 2 constexpr ll MOD = 998244353; #else constexpr ll MOD = 1000003; #endif #endif using mint = static_modint<MOD>; constexpr int INF = (int)1e9 + 10; constexpr ll LINF = (ll)4e18; const double PI = acos(-1.0); constexpr ld EPS = 1e-10; constexpr int Dx[] = {0, 0, -1, 1, -1, 1, -1, 1, 0}; constexpr int Dy[] = {1, -1, 0, 0, -1, -1, 1, 1, 0}; #define REP(i, m, n) for (ll i = m; i < (ll)(n); ++i) #define rep(i, n) REP(i, 0, n) #define REPI(i, m, n) for (int i = m; i < (int)(n); ++i) #define repi(i, n) REPI(i, 0, n) #define RREP(i, m, n) for (ll i = n - 1; i >= m; i--) #define rrep(i, n) RREP(i, 0, n) #define YES(n) cout << ((n) ? "YES" : "NO") << "\n" #define Yes(n) cout << ((n) ? "Yes" : "No") << "\n" #define all(v) v.begin(), v.end() #define NP(v) next_permutation(all(v)) #define dbg(x) cerr << #x << ":" << x << "\n"; #define UNIQUE(v) v.erase(unique(all(v)), v.end()) struct io_init { io_init() { cin.tie(nullptr); ios::sync_with_stdio(false); cout << setprecision(20) << setiosflags(ios::fixed); }; } io_init; template <typename T> inline bool chmin(T &a, T b) { if (a > b) { a = b; return true; } return false; } template <typename T> inline bool chmax(T &a, T b) { if (a < b) { a = b; return true; } return false; } inline ll floor(ll a, ll b) { if (b < 0) a *= -1, b *= -1; if (a >= 0) return a / b; return -((-a + b - 1) / b); } inline ll ceil(ll a, ll b) { return floor(a + b - 1, b); } template <typename A, size_t N, typename T> inline void Fill(A (&array)[N], const T &val) { fill((T *)array, (T *)(array + N), val); } template <typename T> vector<T> compress(vector<T> &v) { vector<T> val = v; sort(all(val)), val.erase(unique(all(val)), val.end()); for (auto &&vi : v) vi = lower_bound(all(val), vi) - val.begin(); return val; } template <typename T, typename U> constexpr istream &operator>>(istream &is, pair<T, U> &p) noexcept { is >> p.first >> p.second; return is; } template <typename T, typename U> constexpr ostream &operator<<(ostream &os, pair<T, U> p) noexcept { os << p.first << " " << p.second; return os; } ostream &operator<<(ostream &os, mint m) { os << m.val(); return os; } ostream &operator<<(ostream &os, modint m) { os << m.val(); return os; } template <typename T> constexpr istream &operator>>(istream &is, vector<T> &v) noexcept { for (int i = 0; i < v.size(); i++) is >> v[i]; return is; } template <typename T> constexpr ostream &operator<<(ostream &os, vector<T> &v) noexcept { for (int i = 0; i < v.size(); i++) os << v[i] << (i + 1 == v.size() ? "" : " "); return os; } template <typename T> constexpr void operator--(vector<T> &v, int) noexcept { for (int i = 0; i < v.size(); i++) v[i]--; } random_device seed_gen; mt19937_64 engine(seed_gen()); inline ll randInt(ll l, ll r) { return engine() % (r - l + 1) + l; } struct BiCoef { vector<mint> fact_, inv_, finv_; BiCoef(int n) noexcept : fact_(n, 1), inv_(n, 1), finv_(n, 1) { fact_.assign(n, 1), inv_.assign(n, 1), finv_.assign(n, 1); for (int i = 2; i < n; i++) { fact_[i] = fact_[i - 1] * i; inv_[i] = -inv_[MOD % i] * (MOD / i); finv_[i] = finv_[i - 1] * inv_[i]; } } mint C(ll n, ll k) const noexcept { if (n < k || n < 0 || k < 0) return 0; return fact_[n] * finv_[k] * finv_[n - k]; } mint P(ll n, ll k) const noexcept { return C(n, k) * fact_[k]; } mint H(ll n, ll k) const noexcept { return C(n + k - 1, k); } mint Ch1(ll n, ll k) const noexcept { if (n < 0 || k < 0) return 0; mint res = 0; for (int i = 0; i < n; i++) res += C(n, i) * mint(n - i).pow(k) * (i & 1 ? -1 : 1); return res; } mint fact(ll n) const noexcept { if (n < 0) return 0; return fact_[n]; } mint inv(ll n) const noexcept { if (n < 0) return 0; return inv_[n]; } mint finv(ll n) const noexcept { if (n < 0) return 0; return finv_[n]; } }; BiCoef bc(200010); #pragma endregion // ------------------------------- #pragma region Geometry using Real = long double; using Point = complex<Real>; inline bool eq(Real a, Real b) { return fabs(b - a) < EPS; } inline bool eq(Point a, Point b) { return fabs(b - a) < EPS; } Point operator*(const Point &p, const Real &d) { return Point(real(p) * d, imag(p) * d); } istream &operator>>(istream &is, Point &p) { Real a, b; is >> a >> b; p = Point(a, b); return is; } ostream &operator<<(ostream &os, Point &p) { return os << fixed << setprecision(20) << p.real() << " " << p.imag(); } // 点 p を原点を中心として反時計回りに theta 回転 inline Point rotate(const Point &p, Real theta) { return Point(cos(theta) * p.real() - sin(theta) * p.imag(), sin(theta) * p.real() + cos(theta) * p.imag()); } // 点 p を点 c を中心として反時計回りに theta 回転 inline Point rotate(Point p, Real theta, const Point &c) { p -= c; return rotate(p, theta) + c; } Real radian_to_degree(Real r) { return (r * 180.0 / PI); } Real degree_to_radian(Real d) { return (d * PI / 180.0); } // a-b-c の角度のうち小さい方を返す Real get_angle(Point a, Point b, Point c) { a -= b, c -= b; Real alpha = atan2(a.imag(), a.real()), beta = atan2(c.imag(), c.real()); if (alpha > beta) swap(alpha, beta); Real theta = (beta - alpha); return min(theta, 2 * acos(-1) - theta); } // a-b-c の角度([0,2π)、a を反時計回りに回転させてcに重ねる角度) Real get_angle2(Point a, Point b, Point c) { a -= b, c -= b; Real theta = atan2(imag(c), real(c)) - atan2(imag(a), real(a)); while (theta < 0) theta += PI * 2; while (theta > PI * 2) theta -= PI * 2; return theta; } // a-b-c の角度([0,2π)、p を間に含む方) Real get_angle2(const Point &a, const Point &b, const Point &c, const Point &p) { if (get_angle2(a, b, p) + get_angle2(p, b, c) < PI * 2) return get_angle2(a, b, c); else return get_angle2(c, b, a); } namespace std { bool operator<(const Point &a, const Point &b) { return !eq(a.real(), b.real()) ? a.real() < b.real() : a.imag() < b.imag(); } } // namespace std struct Line { Point a, b; Line() = default; Line(Point a, Point b) : a(a), b(b) {} Line(Real A, Real B, Real C) // Ax + By = C { if (eq(A, 0)) a = Point(0, C / B), b = Point(1, C / B); else if (eq(B, 0)) b = Point(C / A, 0), b = Point(C / A, 1); else a = Point(0, C / B), b = Point(C / A, 0); } friend ostream &operator<<(ostream &os, Line &p) { return os << p.a << " to " << p.b; } friend istream &operator>>(istream &is, Line &a) { return is >> a.a >> a.b; } }; // Ax + By = C tuple<Real, Real, Real> parameter(const Line &l) { Real A = imag(l.b) - imag(l.a); Real B = real(l.a) - real(l.b); Real C = real(l.a) * A + imag(l.a) * B; return {A, B, C}; } struct Segment : Line { Segment() = default; Segment(Point a, Point b) : Line(a, b) {} }; struct Circle { Point p; Real r; Circle() = default; Circle(Point p, Real r) : p(p), r(r) {} }; using Points = vector<Point>; using Polygon = vector<Point>; using Segments = vector<Segment>; using Lines = vector<Line>; using Circles = vector<Circle>; inline Real cross(const Point &a, const Point &b) { return real(a) * imag(b) - imag(a) * real(b); } inline Real dot(const Point &a, const Point &b) { return real(a) * real(b) + imag(a) * imag(b); } // 直線がx軸となす角 [0, π) // to do: verify inline Real get_angle(const Line &l) { Point p = l.a - l.b; if (imag(p) < 0) p *= -1; return get_angle2(Point(1, 0), Point(0, 0), p); } // 2直線がなす角 [0, π/2] // to do: verify inline Real get_angle(const Line &l1, const Line &l2) { Real theta = get_angle(l1) - get_angle(l2); if (theta < 0) theta += PI; return theta >= PI / 2.0 ? theta - PI / 2.0 : theta; } // http://judge.u-aizu.ac.jp/onlinejudge/description.jsp?id=CGL_1_C // 点の回転方向 int ccw(const Point &a, Point b, Point c) { b = b - a, c = c - a; if (cross(b, c) > EPS) return +1; // "COUNTER_CLOCKWISE" if (cross(b, c) < -EPS) return -1; // "CLOCKWISE" if (dot(b, c) < 0) return +2; // "ONLINE_BACK" if (norm(b) < norm(c)) return -2; // "ONLINE_FRONT" return 0; // "ON_SEGMENT" } // p, q を m : n に内分する点 inline Point internal_point(const Point &p, const Point &q, Real m, Real n) { return (n * p + m * q) / (m + n); } // p, q を m : n に外分する点 inline Point external_point(const Point &p, const Point &q, Real m, Real n) { return internal_point(p, q, m, -n); } // 垂直ベクトル inline Point orthvector(const Point p) { return Point(imag(p), -real(p)); } // http://judge.u-aizu.ac.jp/onlinejudge/description.jsp?id=CGL_2_A // 平行判定 inline bool parallel(const Line &a, const Line &b) { return eq(cross(a.b - a.a, b.b - b.a), 0.0); } // http://judge.u-aizu.ac.jp/onlinejudge/description.jsp?id=CGL_2_A // 垂直判定 inline bool orthogonal(const Line &a, const Line &b) { return eq(dot(a.a - a.b, b.a - b.b), 0.0); } // http://judge.u-aizu.ac.jp/onlinejudge/description.jsp?id=CGL_1_A // 射影 // 直線 l に p から垂線を引いた交点を求める inline Point projection(const Line &l, const Point &p) { double t = dot(p - l.a, l.a - l.b) / norm(l.a - l.b); return l.a + (l.a - l.b) * t; } inline Point projection(const Segment &l, const Point &p) { double t = dot(p - l.a, l.a - l.b) / norm(l.a - l.b); return l.a + (l.a - l.b) * t; } // http://judge.u-aizu.ac.jp/onlinejudge/description.jsp?id=CGL_1_B // 反射 // 直線 l を対称軸として点 p と線対称にある点を求める inline Point reflection(const Line &l, const Point &p) { return p + (projection(l, p) - p) * 2.0; } // 点 p を通り直線 l に垂直な直線 inline Line verticalline(const Line &l, const Point &p) { return Line(p, p + orthvector(l.a - l.b)); } // 点 p, q の垂直二等分線 inline Line bisector(const Point &p, const Point &q) { Line l(p, q); Point m = internal_point(p, q, 1, 1); return verticalline(l, m); } inline Line bisector(const Segment &sg) { return bisector(sg.a, sg.b); } inline bool intersect(const Line &l, const Point &p) { return abs(ccw(l.a, l.b, p)) != 1; } inline bool intersect(const Line &l, const Line &m) { return abs(cross(l.b - l.a, m.b - m.a)) > EPS || abs(cross(l.b - l.a, m.b - l.a)) < EPS; } inline bool intersect(const Segment &s, const Point &p) { return ccw(s.a, s.b, p) == 0; } inline bool intersect(const Line &l, const Segment &s) { return cross(l.b - l.a, s.a - l.a) * cross(l.b - l.a, s.b - l.a) < EPS; } inline Real distance(const Line &l, const Point &p); inline bool intersect(const Circle &c, const Line &l) { return distance(l, c.p) <= c.r + EPS; } inline bool intersect(const Circle &c, const Point &p) { return abs(abs(p - c.p) - c.r) < EPS; } // http://judge.u-aizu.ac.jp/onlinejudge/description.jsp?id=CGL_2_B bool intersect(const Segment &s, const Segment &t) { return ccw(s.a, s.b, t.a) * ccw(s.a, s.b, t.b) <= 0 && ccw(t.a, t.b, s.a) * ccw(t.a, t.b, s.b) <= 0; } int intersect(const Circle &c, const Segment &l) { if (norm(projection(l, c.p) - c.p) - c.r * c.r > EPS) return 0; auto d1 = abs(c.p - l.a), d2 = abs(c.p - l.b); if (d1 < c.r + EPS && d2 < c.r + EPS) return 0; if (d1 < c.r - EPS && d2 > c.r + EPS || d1 > c.r + EPS && d2 < c.r - EPS) return 1; const Point h = projection(l, c.p); if (dot(l.a - h, l.b - h) < 0) return 2; return 0; } // 共通接戦の本数 // http://judge.u-aizu.ac.jp/onlinejudge/description.jsp?id=CGL_7_A&lang=jp int intersect(Circle c1, Circle c2) { if (c1.r < c2.r) swap(c1, c2); Real d = abs(c1.p - c2.p); if (c1.r + c2.r < d) return 4; if (eq(c1.r + c2.r, d)) return 3; if (c1.r - c2.r < d) return 2; if (eq(c1.r - c2.r, d)) return 1; return 0; } inline Real distance(const Point &a, const Point &b) { return abs(a - b); } inline Real distance(const Line &l, const Point &p) { return abs(p - projection(l, p)); } inline Real distance(const Line &l, const Line &m) { return intersect(l, m) ? 0 : distance(l, m.a); } inline Real distance(const Segment &s, const Point &p) { Point r = projection(s, p); if (intersect(s, r)) return abs(r - p); return min(abs(s.a - p), abs(s.b - p)); } // http://judge.u-aizu.ac.jp/onlinejudge/description.jsp?id=CGL_2_D Real distance(const Segment &a, const Segment &b) { if (intersect(a, b)) return 0; return min( {distance(a, b.a), distance(a, b.b), distance(b, a.a), distance(b, a.b)}); } Real distance(const Line &l, const Segment &s) { if (intersect(l, s)) return 0; return min(distance(l, s.a), distance(l, s.b)); } Point crosspoint(const Line &l, const Line &m) { Real A = cross(l.b - l.a, m.b - m.a); Real B = cross(l.b - l.a, l.b - m.a); if (eq(abs(A), 0.0) && eq(abs(B), 0.0)) return m.a; return m.a + (m.b - m.a) * B / A; } // http://judge.u-aizu.ac.jp/onlinejudge/description.jsp?id=CGL_2_C Point crosspoint(const Segment &l, const Segment &m) { return crosspoint(Line(l), Line(m)); } // http://judge.u-aizu.ac.jp/onlinejudge/description.jsp?id=CGL_7_D pair<Point, Point> crosspoint(const Circle &c, const Line l) { Point pr = projection(l, c.p); Point e = (l.b - l.a) / abs(l.b - l.a); if (eq(distance(l, c.p), c.r)) return {pr, pr}; double base = sqrt(c.r * c.r - norm(pr - c.p)); return {pr - e * base, pr + e * base}; } pair<Point, Point> crosspoint(const Circle &c, const Segment &l) { Line aa = Line(l.a, l.b); if (intersect(c, l) == 2) return crosspoint(c, aa); auto ret = crosspoint(c, aa); if (dot(l.a - ret.first, l.b - ret.first) < 0) ret.second = ret.first; else ret.first = ret.second; return ret; } // http://judge.u-aizu.ac.jp/onlinejudge/description.jsp?id=CGL_7_E pair<Point, Point> crosspoint(const Circle &c1, const Circle &c2) { Real d = abs(c1.p - c2.p); Real a = acos((c1.r * c1.r + d * d - c2.r * c2.r) / (2 * c1.r * d)); Real t = atan2(c2.p.imag() - c1.p.imag(), c2.p.real() - c1.p.real()); Point p1 = c1.p + Point(cos(t + a) * c1.r, sin(t + a) * c1.r); Point p2 = c1.p + Point(cos(t - a) * c1.r, sin(t - a) * c1.r); return {p1, p2}; } // http://judge.u-aizu.ac.jp/onlinejudge/description.jsp?id=CGL_7_F // 点 p を通る円 c の接線(接点を返す) pair<Point, Point> tangent(const Circle &c1, const Point &p2) { return crosspoint(c1, Circle(p2, sqrt(norm(c1.p - p2) - c1.r * c1.r))); } // http://judge.u-aizu.ac.jp/onlinejudge/description.jsp?id=CGL_7_G // 円 c1, c2 の共通接線 Lines tangent(Circle c1, Circle c2) { Lines ret; if (c1.r < c2.r) swap(c1, c2); Real g = norm(c1.p - c2.p); if (eq(g, 0)) return ret; Point u = (c2.p - c1.p) / sqrt(g); Point v = rotate(u, PI * 0.5); for (int s : {-1, 1}) { Real h = (c1.r + s * c2.r) / sqrt(g); if (eq(1 - h * h, 0)) { ret.emplace_back(c1.p + u * c1.r, c1.p + (u + v) * c1.r); } else if (1 - h * h > 0) { Point uu = u * h, vv = v * sqrt(1 - h * h); ret.emplace_back(c1.p + (uu + vv) * c1.r, c2.p - (uu + vv) * c2.r * s); ret.emplace_back(c1.p + (uu - vv) * c1.r, c2.p - (uu - vv) * c2.r * s); } } return ret; } // 2点 p, q からの距離が m : n (m != n)となる点の軌跡 Circle Apollonius(const Point &p, const Point &q, Real m, Real n) { assert(!eq(m, n)); Circle res; res.p = external_point(p, q, m * m, n * n); res.r = sqrt(fabs(p - res.p) * fabs(q - res.p)); Point pp = res.p + Point(res.r, 0); assert(eq(distance(pp, p) * n, distance(pp, q) * m)); return res; } // http://judge.u-aizu.ac.jp/onlinejudge/description.jsp?id=CGL_3_B // 凸性判定 bool is_convex(const Polygon &p) { int n = (int)p.size(); for (int i = 0; i < n; i++) { if (ccw(p[(i + n - 1) % n], p[i], p[(i + 1) % n]) == -1) return false; } return true; } // http://judge.u-aizu.ac.jp/onlinejudge/description.jsp?id=CGL_4_A // 凸包 Polygon convex_hull(Polygon &p, bool strict = true) { int n = (int)p.size(), k = 0; if (n <= 2) return p; sort(p.begin(), p.end()); vector<Point> ch(2 * n); Real EPS2 = (strict ? EPS : -EPS); for (int i = 0; i < n; ch[k++] = p[i++]) { while (k >= 2 && cross(ch[k - 1] - ch[k - 2], p[i] - ch[k - 1]) < EPS2) --k; } for (int i = n - 2, t = k + 1; i >= 0; ch[k++] = p[i--]) { while (k >= t && cross(ch[k - 1] - ch[k - 2], p[i] - ch[k - 1]) < EPS2) --k; } ch.resize(k - 1); return ch; } // http://judge.u-aizu.ac.jp/onlinejudge/description.jsp?id=CGL_3_C // 多角形と点の包含判定 enum { OUT, ON, IN }; int contains(const Polygon &Q, const Point &p) { bool in = false; for (int i = 0; i < Q.size(); i++) { Point a = Q[i] - p, b = Q[(i + 1) % Q.size()] - p; if (a.imag() > b.imag()) swap(a, b); if (a.imag() <= 0 && 0 < b.imag() && cross(a, b) < 0) in = !in; if (cross(a, b) == 0 && dot(a, b) <= 0) return ON; } return in ? IN : OUT; } // http://judge.u-aizu.ac.jp/onlinejudge/description.jsp?id=1033 // 線分の重複除去 void merge_segments(vector<Segment> &segs) { auto merge_if_able = [](Segment &s1, const Segment &s2) { if (abs(cross(s1.b - s1.a, s2.b - s2.a)) > EPS) return false; if (ccw(s1.a, s2.a, s1.b) == 1 || ccw(s1.a, s2.a, s1.b) == -1) return false; if (ccw(s1.a, s1.b, s2.a) == -2 || ccw(s2.a, s2.b, s1.a) == -2) return false; s1 = Segment(min(s1.a, s2.a), max(s1.b, s2.b)); return true; }; for (int i = 0; i < segs.size(); i++) { if (segs[i].b < segs[i].a) swap(segs[i].a, segs[i].b); } for (int i = 0; i < segs.size(); i++) { for (int j = i + 1; j < segs.size(); j++) { if (merge_if_able(segs[i], segs[j])) { segs[j--] = segs.back(), segs.pop_back(); } } } } // http://judge.u-aizu.ac.jp/onlinejudge/description.jsp?id=1033 // 線分アレンジメント // 任意の2線分の交点を頂点としたグラフを構築する vector<vector<int>> segment_arrangement(vector<Segment> &segs, vector<Point> &ps) { vector<vector<int>> g; int N = (int)segs.size(); for (int i = 0; i < N; i++) { ps.emplace_back(segs[i].a); ps.emplace_back(segs[i].b); for (int j = i + 1; j < N; j++) { const Point p1 = segs[i].b - segs[i].a; const Point p2 = segs[j].b - segs[j].a; if (cross(p1, p2) == 0) continue; if (intersect(segs[i], segs[j])) { ps.emplace_back(crosspoint(segs[i], segs[j])); } } } sort(begin(ps), end(ps)); ps.erase(unique(begin(ps), end(ps)), end(ps)); int M = (int)ps.size(); g.resize(M); for (int i = 0; i < N; i++) { vector<int> vec; for (int j = 0; j < M; j++) { if (intersect(segs[i], ps[j])) { vec.emplace_back(j); } } for (int j = 1; j < vec.size(); j++) { g[vec[j - 1]].push_back(vec[j]); g[vec[j]].push_back(vec[j - 1]); } } return (g); } // http://judge.u-aizu.ac.jp/onlinejudge/description.jsp?id=CGL_4_C // 凸多角形の切断 // 直線 l.a-l.b で切断しその左側にできる凸多角形を返す Polygon convex_cut(const Polygon &U, Line l) { Polygon ret; for (int i = 0; i < U.size(); i++) { Point now = U[i], nxt = U[(i + 1) % U.size()]; if (ccw(l.a, l.b, now) != -1) ret.push_back(now); if (ccw(l.a, l.b, now) * ccw(l.a, l.b, nxt) < 0) { ret.push_back(crosspoint(Line(now, nxt), l)); } } return (ret); } // http://judge.u-aizu.ac.jp/onlinejudge/description.jsp?id=CGL_3_A // 多角形の面積 Real area(const Polygon &p) { Real A = 0; for (int i = 0; i < p.size(); ++i) { A += cross(p[i], p[(i + 1) % p.size()]); } return A * 0.5; } // http://judge.u-aizu.ac.jp/onlinejudge/description.jsp?id=CGL_7_H // 円と多角形の共通部分の面積 Real area(const Polygon &p, const Circle &c) { if (p.size() < 3) return 0.0; function<Real(Circle, Point, Point)> cross_area = [&](const Circle &c, const Point &a, const Point &b) { Point va = c.p - a, vb = c.p - b; Real f = cross(va, vb), ret = 0.0; if (eq(f, 0.0)) return ret; if (max(abs(va), abs(vb)) < c.r + EPS) return f; if (distance(Segment(a, b), c.p) > c.r - EPS) return c.r * c.r * arg(vb * conj(va)); auto u = crosspoint(c, Segment(a, b)); vector<Point> tot{a, u.first, u.second, b}; for (int i = 0; i + 1 < tot.size(); i++) { ret += cross_area(c, tot[i], tot[i + 1]); } return ret; }; Real A = 0; for (int i = 0; i < p.size(); i++) { A += cross_area(c, p[i], p[(i + 1) % p.size()]); } return A / 2.0; } // 2円の共通部分の面積 Real area(const Circle &c1, const Circle &c2) { int t = intersect(c1, c2); if (t > 2) return 0.0; if (t < 2) return min(c1.r * c1.r * PI, c2.r * c2.r * PI); Real res = 0.0; auto [p1, p2] = crosspoint(c1, c2); Real theta1 = get_angle2(p1, c1.p, p2, c2.p); res += c1.r * c1.r * 0.5 * (theta1 - sin(theta1)); Real theta2 = get_angle2(p2, c2.p, p1, c1.p); res += c2.r * c2.r * 0.5 * (theta2 - sin(theta2)); return fabs(res); } // http://judge.u-aizu.ac.jp/onlinejudge/description.jsp?id=CGL_4_B // 凸多角形の直径(最遠頂点対間距離) Real convex_diameter(const Polygon &p) { int N = (int)p.size(); int is = 0, js = 0; for (int i = 1; i < N; i++) { if (p[i].imag() > p[is].imag()) is = i; if (p[i].imag() < p[js].imag()) js = i; } Real maxdis = norm(p[is] - p[js]); int maxi, maxj, i, j; i = maxi = is; j = maxj = js; do { if (cross(p[(i + 1) % N] - p[i], p[(j + 1) % N] - p[j]) >= 0) { j = (j + 1) % N; } else { i = (i + 1) % N; } if (norm(p[i] - p[j]) > maxdis) { maxdis = norm(p[i] - p[j]); maxi = i; maxj = j; } } while (i != is || j != js); return sqrt(maxdis); } // http://judge.u-aizu.ac.jp/onlinejudge/description.jsp?id=CGL_5_A // 最近点対 Real closest_pair(Points ps) { if (ps.size() <= 1) throw(0); sort(begin(ps), end(ps)); auto compare_y = [&](const Point &a, const Point &b) { return imag(a) < imag(b); }; vector<Point> beet(ps.size()); const Real INF = 1e18; function<Real(int, int)> rec = [&](int left, int right) { if (right - left <= 1) return INF; int mid = (left + right) >> 1; auto x = real(ps[mid]); auto ret = min(rec(left, mid), rec(mid, right)); inplace_merge(begin(ps) + left, begin(ps) + mid, begin(ps) + right, compare_y); int ptr = 0; for (int i = left; i < right; i++) { if (abs(real(ps[i]) - x) >= ret) continue; for (int j = 0; j < ptr; j++) { auto luz = ps[i] - beet[ptr - j - 1]; if (imag(luz) >= ret) break; ret = min(ret, abs(luz)); } beet[ptr++] = ps[i]; } return ret; }; return rec(0, (int)ps.size()); } // 凸多角形の共通部分 Polygon intersection(const Polygon &p1, const Polygon &p2) { int n1 = p1.size(), n2 = p2.size(); Polygon res; rep(i, n1) { if (contains(p2, p1[i]) != OUT) res.push_back(p1[i]); } rep(i, n2) { if (contains(p1, p2[i]) != OUT) res.push_back(p2[i]); } rep(i, n1) rep(j, n2) { Segment s1(p1[i], p1[(i + 1) % n1]); Segment s2(p2[j], p2[(j + 1) % n2]); if (intersect(s1, s2)) res.push_back(crosspoint(s1, s2)); } return convex_hull(res); } #pragma endregion void solve() { int n, m; cin >> n >> m; vector<double> x(n * 2), y(n * 2); vector<Segment> s(n); rep(i, n) { cin >> x[i * 2] >> y[i * 2] >> x[i * 2 + 1] >> y[i * 2 + 1]; s[i] = Segment({x[i * 2], y[i * 2]}, {x[i * 2 + 1], y[i * 2 + 1]}); } auto can = [&](int i, int type1, int j, int type2) { int num1 = i * 2 + type1; int num2 = j * 2 + type2; Point p(x[num1], y[num1]); Point q(x[num2], y[num2]); Segment pq(p, q); rep(k, n) { if (k == i or k == j) continue; if (intersect(pq, s[k])) return false; } return true; }; double d[300][300]; rep(i, n * 2) rep(j, n * 2) d[i][j] = (i == j ? 0.0 : 1e18); rep(i, n) REP(j, i, n) rep(t1, 2) rep(t2, 2) { if (can(i, t1, j, t2)) { int num1 = i * 2 + t1; int num2 = j * 2 + t2; d[num1][num2] = d[num2][num1] = distance(Point(x[num1], y[num1]), Point(x[num2], y[num2])); } } rep(k, n * 2) rep(i, n * 2) rep(j, n * 2) { chmin(d[i][j], d[i][k] + d[k][j]); } rep(_, m) { int i, j, type1, type2; cin >> i >> type1 >> j >> type2; i--, j--; type1--, type2--; int num1 = i * 2 + type1; int num2 = j * 2 + type2; cout << d[num1][num2] << "\n"; } } int main() { solve(); }