結果

問題 No.2376 障害物競プロ
ユーザー mikammikam
提出日時 2023-07-07 23:04:11
言語 C++17
(gcc 12.3.0 + boost 1.83.0)
結果
AC  
実行時間 580 ms / 4,000 ms
コード長 10,720 bytes
コンパイル時間 4,898 ms
コンパイル使用メモリ 262,660 KB
実行使用メモリ 6,944 KB
最終ジャッジ日時 2024-07-21 19:28:08
合計ジャッジ時間 68,894 ms
ジャッジサーバーID
(参考情報)
judge5 / judge4
このコードへのチャレンジ
(要ログイン)

テストケース

テストケース表示
入力 結果 実行時間
実行使用メモリ
testcase_00 AC 2 ms
6,812 KB
testcase_01 AC 3 ms
6,944 KB
testcase_02 AC 3 ms
6,940 KB
testcase_03 AC 3 ms
6,940 KB
testcase_04 AC 271 ms
6,944 KB
testcase_05 AC 392 ms
6,940 KB
testcase_06 AC 159 ms
6,940 KB
testcase_07 AC 483 ms
6,944 KB
testcase_08 AC 485 ms
6,944 KB
testcase_09 AC 474 ms
6,940 KB
testcase_10 AC 472 ms
6,940 KB
testcase_11 AC 421 ms
6,944 KB
testcase_12 AC 354 ms
6,944 KB
testcase_13 AC 473 ms
6,940 KB
testcase_14 AC 472 ms
6,940 KB
testcase_15 AC 457 ms
6,944 KB
testcase_16 AC 535 ms
6,940 KB
testcase_17 AC 373 ms
6,944 KB
testcase_18 AC 336 ms
6,944 KB
testcase_19 AC 493 ms
6,944 KB
testcase_20 AC 516 ms
6,940 KB
testcase_21 AC 513 ms
6,944 KB
testcase_22 AC 387 ms
6,944 KB
testcase_23 AC 250 ms
6,944 KB
testcase_24 AC 276 ms
6,940 KB
testcase_25 AC 134 ms
6,944 KB
testcase_26 AC 309 ms
6,940 KB
testcase_27 AC 273 ms
6,944 KB
testcase_28 AC 158 ms
6,940 KB
testcase_29 AC 142 ms
6,940 KB
testcase_30 AC 140 ms
6,940 KB
testcase_31 AC 165 ms
6,940 KB
testcase_32 AC 22 ms
6,944 KB
testcase_33 AC 62 ms
6,940 KB
testcase_34 AC 83 ms
6,940 KB
testcase_35 AC 57 ms
6,940 KB
testcase_36 AC 274 ms
6,940 KB
testcase_37 AC 367 ms
6,940 KB
testcase_38 AC 131 ms
6,940 KB
testcase_39 AC 367 ms
6,940 KB
testcase_40 AC 99 ms
6,940 KB
testcase_41 AC 127 ms
6,944 KB
testcase_42 AC 580 ms
6,944 KB
testcase_43 AC 580 ms
6,944 KB
権限があれば一括ダウンロードができます

ソースコード

diff #

// #include "atcoder/convolution"
#include "atcoder/dsu"
#include "atcoder/fenwicktree"
#include "atcoder/lazysegtree"
#include "atcoder/math"
#include "atcoder/maxflow"
#include "atcoder/mincostflow"
#include "atcoder/modint"
#include "atcoder/scc"
#include "atcoder/segtree"
#include "atcoder/string"
#include "atcoder/twosat"
using namespace atcoder;
#include <bits/stdc++.h>
using namespace std;
// #include <boost/multiprecision/cpp_int.hpp>
#pragma GCC target("avx2")
#pragma GCC optimize("O3")
#pragma GCC optimize("unroll-loops")
#define rep(i, n) for (int i = 0; i < (int)(n); i++)
#define rep2(i,a,b) for (int i = (int)(a); i < (int)(b); i++)
#define all(v) v.begin(),v.end()
#define inc(x,l,r) ((l)<=(x)&&(x)<(r)) 
#define Unique(x) sort(all(x)), x.erase(unique(all(x)), x.end())
#define pcnt __builtin_popcountll
typedef long long ll;
#define int ll
using ld = long double;
using vi = vector<int>;
using vs = vector<string>;
using P = pair<int,int>;
using vp = vector<P>;
// using Bint = boost::multiprecision::cpp_int;
template<typename T1,typename T2> bool chmax(T1 &a, const T2 b) {if (a < b) {a = b; return true;} else return false; }
template<typename T1,typename T2> bool chmin(T1 &a, const T2 b) {if (a > b) {a = b; return true;} else return false; }
template<typename T> using priority_queue_greater = priority_queue<T, vector<T>, greater<T>>;
template<typename T> istream &operator>>(istream& is,vector<T> &v){for(T &in:v)is>>in;return is;}
template<typename T1,typename T2> ostream &operator<< (ostream &os, const pair<T1,T2> &p){os << p.first <<" "<<p.second;return os;}
ostream &operator<< (ostream &os, const modint1000000007 &m){os << m.val();return os;}
istream &operator>> (istream &is, modint1000000007 &m){ll in;is>>in;m=in;return is;}
ostream &operator<< (ostream &os, const modint998244353 &m){os << m.val();return os;}
istream &operator>> (istream &is, modint998244353 &m){ll in;is>>in;m=in;return is;}
template<class... T> void input(T&... a){(cin>> ... >> a);}
#ifdef LOCAL
template<typename T> ostream &operator<<(ostream &os,const vector<T> &v){os<<"\x1b[32m";rep(i,v.size())os<<v[i]<<(i+1!=v.size()?" ":"");os<<"\x1b[0m";return os;}
template<class T> void print(T& a){cout << "\x1b[32m"<< a<< '\n' << "\x1b[0m";}
template<class T,class... Ts> void print(const T&a, const Ts&... b){cout << "\x1b[32m" << a;(cout<<...<<(cout<<' ',b));cout<<'\n' << "\x1b[0m";}
#else
template<typename T> ostream &operator<<(ostream &os,const vector<T> &v){rep(i,v.size())os<<v[i]<<(i+1!=v.size()?" ":"");return os;}
template<class T> void print(T& a){cout << a<< '\n';}
template<class T,class... Ts> void print(const T&a, const Ts&... b){cout << a;(cout<<...<<(cout<<' ',b));cout<<'\n';}
#endif
#define VI(v,n) vi v(n); input(v)
#define INT(...) int __VA_ARGS__; input(__VA_ARGS__)
#define STR(...) string __VA_ARGS__; input(__VA_ARGS__)
#define CHAR(...) char __VA_ARGS__; input(__VA_ARGS__)
int sign(ll x){return x>0?1:x<0?-1:0;}
ll ceil(ll x,ll y){assert(y!=0);if(sign(x)==sign(y))return (x+y-1)/y;return -((-x/y));}
ll floor(ll x,ll y){assert(y!=0);if(sign(x)==sign(y))return x/y;if(y<0)x*=-1,y*=-1;return x/y-(x%y<0);}
ll abs(ll x,ll y){return abs(x-y);}
ll bit(int n){return 1ll<<n;}
bool ins(string s,string t){return s.find(t)!=string::npos;}
P operator+ (const P &p, const P &q){ return P{p.first+q.first,p.second+q.second};}
P operator- (const P &p, const P &q){ return P{p.first-q.first,p.second-q.second};}
int yesno(bool ok,string y="Yes",string n="No"){ cout<<(ok?y:n)<<endl;return 0;}
int YESNO(bool ok,string y="YES",string n="NO"){ cout<<(ok?y:n)<<endl;return 0;}
int di[]={-1,0,1,0,-1,-1,1,1};
int dj[]={0,1,0,-1,-1,1,-1,1};
const ll INF = 1e18;
//using mint = modint1000000007;
//using mint = modint998244353;
//mint stom(const string &s,int b=10){mint res = 0;for(auto c:s)res *= b,res += c-'0';return res;}
int sqr(int x){return x*x;}
//fraction
struct frac {
    ll a, b;
    frac(ll a=0, ll b=1){
        if (b == 0) {
            this->a = (a==0?0:a>0?1:-1);
            this->b = 0;
            return;
        }
        ll g = gcd(abs(a),abs(b));
        if (b < 0) g = -g;
        this->a = a/g;
        this->b = b/g;
    }
    // frac inv() const { return frac(b,a);}
    // friend frac ceil(const frac &f) {return frac(::ceil(f.a,f.b),1);}
    frac operator+(const frac& x) const { return frac(a*x.b + x.a*b, b*x.b);}
    frac operator-(const frac& x) const { return frac(a*x.b - x.a*b, b*x.b);}
    frac operator*(const frac& x) const { return frac(a*x.a, b*x.b);}
    frac operator/(const frac& x) const { return frac(a*x.b, b*x.a);}
    frac& operator+=(const frac& x) { return *this = *this + x;}
    frac& operator-=(const frac& x) { return *this = *this - x;}
    frac& operator*=(const frac& x) { return *this = *this * x;}
    frac& operator/=(const frac& x) { return *this = *this / x;}
    bool operator<(const frac& x) const { return a*x.b < x.a*b;}
    bool operator>(const frac& x) const { return a*x.b > x.a*b;}
    bool operator==(const frac& x) const { return a == x.a && b == x.b;}
    bool operator!=(const frac& x) const { return a != x.a || b != x.b;}
    friend ld sqrt(const frac &x) {return sqrtl(x.a)/sqrtl(x.b);}
    friend ostream& operator<<(ostream&o,const frac&a){o<<a.a<<"/"<<a.b;return o;}
};
class Point {
public:
    ll x,y;
    Point(ll x_=0,ll y_=0):x(x_),y(y_){}

    Point operator-()const{return Point(-x,-y);}
    Point operator+(const Point&p)const{return Point(x+p.x,y+p.y);}
    Point operator-(const Point&p)const{return Point(x-p.x,y-p.y);}
    Point &operator+=(const Point &p){return *this = *this + p;}
    Point &operator-=(const Point &p){return *this = *this - p;}
    Point operator*(const int k)const{return Point(x*k,y*k);}
    bool operator<(const Point &p)const {return x==p.x?y<p.y:x<p.x;}
    bool operator==(const Point&p)const{return x==p.x&&y==p.y;}

    friend Point rotate_right(const Point &p){return Point(p.y,-p.x);}
    friend ll dot(const Point &p,const Point &q){return p.x*q.x+p.y*q.y;}
    friend ll cross(const Point &p,const Point &q){return p.x*q.y-p.y*q.x;}
    friend ll norm(const Point &p){return p.x*p.x+p.y*p.y;}
    friend ll distance2(const Point &a,const Point &b){return norm(a-b);}
    friend bool orthogonal(const Point&a,const Point&b){return dot(a,b)==0;}
    friend bool parallel(const Point&a,const Point&b){return cross(a,b)==0;}
    friend istream &operator>>(istream &is, Point &p){is >> p.x >> p.y;return (is);}
    friend ostream &operator<<(ostream &os, Point &p){os << p.x << " " << p.y;return (os);}
};
enum{ONLINE_FRONT=-2,CLOCKWISE=-1,ON_SEGMENT=0,COUNTER_CLOCKWISE=1,ONLINE_BACK=2};
int ccw(const Point &a,const Point &b){
    int crs = cross(a,b);
    return crs>0?COUNTER_CLOCKWISE
        :crs<0?CLOCKWISE
        :dot(a,b)<0?ONLINE_BACK
        :norm(a)<norm(b)?ONLINE_FRONT
        :ON_SEGMENT;
}
int ccw(const Point &a,const Point b,const Point c){return ccw(b-a,c-a);}
struct Line{
    Point p1,p2;
    Line(Point p1_=Point(),Point p2_=Point()):p1(p1_),p2(p2_){}

    friend Point vec(const Line &l){return l.p2-l.p1;}
    friend ll norm(const Line &l){return norm(vec(l));}
    friend bool orthogonal(const Line&s,const Line&t){return orthogonal(vec(s),vec(t));}
    friend bool parallel(const Line&s,const Line&t){return parallel(vec(s),vec(t));}
    friend bool intersect(const Line&s,const Line&t){return !parallel(s,t)||intersect(s,t.p1);}
    friend bool intersect(const Line&s,const Point&p){return cross(vec(s),p-s.p1)==0;}
    friend frac distance2(const Line &s,const Point &p){
        int a = (s.p2.y-s.p1.y)*p.x+(s.p1.x-s.p2.x)*p.y-s.p1.x*s.p2.y+s.p1.y*s.p2.x;
        int b = norm(s);
        return frac(a*a,b);
    }
    friend frac distance2(const Line&s,const Line&t){return intersect(s,t)?frac(0):distance2(s,t.p1);}
    friend int ccw(const Line &l,const Point &p){return ccw(l.p1,l.p2,p);}
};
struct Segment:Line{
    Segment(Point p1_=Point(),Point p2_=Point()):Line(p1_,p2_){}

    friend bool intersect(const Segment&s,const Segment&t){return ccw(s,t.p1)*ccw(s,t.p2)<=0&&ccw(t,s.p1)*ccw(t,s.p2)<=0;}
    friend bool intersect(const Segment&s,const Point&p){return ccw(s,p)==ON_SEGMENT;}
    friend bool intersect(const Line&s,const Segment&t){return sign(cross(vec(s),t.p1-s.p1))*sign(cross(vec(s),t.p2-s.p1))<=0;}
    friend bool intersect(const Segment&s,const Line&t){return intersect(t,s);}
    friend frac distance2(const Segment&s,const Point&p){
        return dot(vec(s),p-s.p1)<0?frac(distance2(p,s.p1))
            :dot(-vec(s),p-s.p2)<0?frac(distance2(p,s.p2))
            :distance2(Line(s),p);
    }
    friend frac distance2(const Segment&s,const Segment&t){
        return intersect(s,t)?frac(0):min({
            distance2(s,t.p1),distance2(s,t.p2),
            distance2(t,s.p1),distance2(t,s.p2)
        });
    }
    friend frac distance2(const Line&s,const Segment&t){
        return intersect(s,t)?frac(0):min(distance2(s,t.p1),distance2(s,t.p2));
    }
    friend frac distance2(const Segment&s,const Line&t){return distance2(t,s);}
};
signed main() {
    cin.tie(0);
    ios_base::sync_with_stdio(false);
    cout << fixed << setprecision(20);

    INT(n,m);
    map<P,int> mp;
    vector x(n,vi(2));
    vector y(n,vi(2));
    auto f = [&](int i,int j){
        if(!mp.count({i,j}))mp[{i,j}]=mp.size();
        return mp[{i,j}];
    };
    rep(i,n)rep(j,2)cin>>x[i][j]>>y[i][j],f(x[i][j],y[i][j]);
    vector dist(2*n,vector<ld>(2*n,INF));
    rep(i,n){
        Segment Si(Point(x[i][0],y[i][0]),Point(x[i][1],y[i][1]));
        bool ok = true;
        rep(j,n)if(i!=j){
            Segment Sj(Point(x[j][0],y[j][0]),Point(x[j][1],y[j][1]));
            if(intersect(Si,Sj)){
                ok = false;
                break;
            }
        }
        if(ok)dist[f(x[i][0],y[i][0])][f(x[i][1],y[i][1])]=dist[f(x[i][1],y[i][1])][f(x[i][0],y[i][0])]=sqrt(distance2(Point(x[i][0],y[i][0]),Point(x[i][1],y[i][1])));
    }
    rep(i,n)rep(j,i){
        rep(s,2)rep(t,2){
            Segment S(Point(x[i][s],y[i][s]),Point(x[j][t],y[j][t]));
            bool ok = true;
            rep(k,n)if(k!=i&&k!=j){
                Segment Sk(Point(x[k][0],y[k][0]),Point(x[k][1],y[k][1]));
                if(intersect(S,Sk)){
                    ok = false;
                    break;
                }
            }
            if(ok)dist[f(x[i][s],y[i][s])][f(x[j][t],y[j][t])]=dist[f(x[j][t],y[j][t])][f(x[i][s],y[i][s])]=sqrt(distance2(Point(x[i][s],y[i][s]),Point(x[j][t],y[j][t])));
        }
    }
    rep(k,2*n)rep(i,2*n)rep(j,2*n)chmin(dist[i][j],dist[i][k]+dist[k][j]);
    rep(i,m){
        INT(a,b,c,d);
        --a;--b;--c;--d;
        print(dist[f(x[a][b],y[a][b])][f(x[c][d],y[c][d])]);
    }
    return 0;
}
0