結果
問題 | No.2376 障害物競プロ |
ユーザー |
![]() |
提出日時 | 2023-07-07 23:28:27 |
言語 | C++17 (gcc 13.3.0 + boost 1.87.0) |
結果 |
AC
|
実行時間 | 481 ms / 4,000 ms |
コード長 | 21,129 bytes |
コンパイル時間 | 1,940 ms |
コンパイル使用メモリ | 158,696 KB |
最終ジャッジ日時 | 2025-02-15 08:37:27 |
ジャッジサーバーID (参考情報) |
judge2 / judge4 |
(要ログイン)
ファイルパターン | 結果 |
---|---|
sample | AC * 4 |
other | AC * 40 |
ソースコード
/* #region Head */// #include <bits/stdc++.h>#include <algorithm>#include <array>#include <bitset>#include <cassert> // assert.h#include <cmath> // math.h#include <cstring>#include <ctime>#include <deque>#include <fstream>#include <functional>#include <iomanip>#include <iostream>#include <list>#include <map>#include <memory>#include <numeric>#include <queue>#include <random>#include <set>#include <sstream>#include <stack>#include <string>#include <unordered_map>#include <unordered_set>#include <vector>using namespace std;using ll = long long;using ull = unsigned long long;using ld = long double;using pll = pair<ll, ll>;template <class T> using vc = vector<T>;template <class T> using vvc = vc<vc<T>>;using vll = vc<ll>;using vvll = vvc<ll>;using vld = vc<ld>;using vvld = vvc<ld>;using vs = vc<string>;using vvs = vvc<string>;template <class T, class U> using um = unordered_map<T, U>;template <class T> using pq = priority_queue<T>;template <class T> using pqa = priority_queue<T, vc<T>, greater<T>>;template <class T> using us = unordered_set<T>;#define TREP(T, i, m, n) for (T i = (m), i##_len = (T)(n); i < i##_len; ++(i))#define TREPM(T, i, m, n) for (T i = (m), i##_max = (T)(n); i <= i##_max; ++(i))#define TREPR(T, i, m, n) for (T i = (m), i##_min = (T)(n); i >= i##_min; --(i))#define TREPD(T, i, m, n, d) for (T i = (m), i##_len = (T)(n); i < i##_len; i += (d))#define TREPMD(T, i, m, n, d) for (T i = (m), i##_max = (T)(n); i <= i##_max; i += (d))#define REP(i, m, n) for (ll i = (m), i##_len = (ll)(n); i < i##_len; ++(i))#define REPM(i, m, n) for (ll i = (m), i##_max = (ll)(n); i <= i##_max; ++(i))#define REPR(i, m, n) for (ll i = (m), i##_min = (ll)(n); i >= i##_min; --(i))#define REPD(i, m, n, d) for (ll i = (m), i##_len = (ll)(n); i < i##_len; i += (d))#define REPMD(i, m, n, d) for (ll i = (m), i##_max = (ll)(n); i <= i##_max; i += (d))#define REPI(itr, ds) for (auto itr = ds.begin(); itr != ds.end(); itr++)#define REPIR(itr, ds) for (auto itr = ds.rbegin(); itr != ds.rend(); itr++)#define ALL(x) begin(x), end(x)#define SIZE(x) ((ll)(x).size())#define ISIZE(x) ((int)(x).size())#define PERM(c) \sort(ALL(c)); \for (bool c##p = 1; c##p; c##p = next_permutation(ALL(c)))#define UNIQ(v) v.erase(unique(ALL(v)), v.end());#define CEIL(a, b) (((a) + (b)-1) / (b))#define endl '\n'constexpr ll INF = 1'010'000'000'000'000'017LL;constexpr int IINF = 1'000'000'007LL;constexpr ll MOD = 1'000'000'007LL; // 1e9 + 7// constexpr ll MOD = 998244353;constexpr ld EPS = 1e-12;constexpr ld PI = 3.14159265358979323846;template <typename T> istream &operator>>(istream &is, vc<T> &vec) { // vector 入力for (T &x : vec) is >> x;return is;}template <typename T> ostream &operator<<(ostream &os, const vc<T> &vec) { // vector 出力 (for dump)os << "{";REP(i, 0, SIZE(vec)) os << vec[i] << (i == i_len - 1 ? "" : ", ");os << "}";return os;}template <typename T> ostream &operator>>(ostream &os, const vc<T> &vec) { // vector 出力 (inline)REP(i, 0, SIZE(vec)) os << vec[i] << (i == i_len - 1 ? "\n" : " ");return os;}template <typename T, size_t _Nm> istream &operator>>(istream &is, array<T, _Nm> &arr) { // array 入力REP(i, 0, SIZE(arr)) is >> arr[i];return is;}template <typename T, size_t _Nm> ostream &operator<<(ostream &os, const array<T, _Nm> &arr) { // array 出力 (for dump)os << "{";REP(i, 0, SIZE(arr)) os << arr[i] << (i == i_len - 1 ? "" : ", ");os << "}";return os;}template <typename T, typename U> istream &operator>>(istream &is, pair<T, U> &pair_var) { // pair 入力is >> pair_var.first >> pair_var.second;return is;}template <typename T, typename U> ostream &operator<<(ostream &os, const pair<T, U> &pair_var) { // pair 出力os << "(" << pair_var.first << ", " << pair_var.second << ")";return os;}// map, um, set, us 出力template <class T> ostream &out_iter(ostream &os, const T &map_var) {os << "{";REPI(itr, map_var) {os << *itr;auto itrcp = itr;if (++itrcp != map_var.end()) os << ", ";}return os << "}";}template <typename T, typename U> ostream &operator<<(ostream &os, const map<T, U> &map_var) {return out_iter(os, map_var);}template <typename T, typename U> ostream &operator<<(ostream &os, const um<T, U> &map_var) {os << "{";REPI(itr, map_var) {auto [key, value] = *itr;os << "(" << key << ", " << value << ")";auto itrcp = itr;if (++itrcp != map_var.end()) os << ", ";}os << "}";return os;}template <typename T> ostream &operator<<(ostream &os, const set<T> &set_var) { return out_iter(os, set_var); }template <typename T> ostream &operator<<(ostream &os, const us<T> &set_var) { return out_iter(os, set_var); }template <typename T> ostream &operator<<(ostream &os, const pq<T> &pq_var) {pq<T> pq_cp(pq_var);os << "{";if (!pq_cp.empty()) {os << pq_cp.top(), pq_cp.pop();while (!pq_cp.empty()) os << ", " << pq_cp.top(), pq_cp.pop();}return os << "}";}// tuple 出力template <size_t N = 0, bool end_line = false, typename... Args> ostream &operator<<(ostream &os, tuple<Args...> &a) {if constexpr (N < std::tuple_size_v<tuple<Args...>>) {os << get<N>(a);if constexpr (N + 1 < std::tuple_size_v<tuple<Args...>>) {os << ' ';} else if constexpr (end_line) {os << '\n';}return operator<< <N + 1, end_line>(os, a);}return os;}template <typename... Args> void print_tuple(tuple<Args...> &a) { operator<< <0, true>(std::cout, a); }void pprint() { std::cout << endl; }template <class Head, class... Tail> void pprint(Head &&head, Tail &&...tail) {std::cout << head;if (sizeof...(Tail) > 0) std::cout << ' ';pprint(move(tail)...);}// dump#define DUMPOUT cerrvoid dump_func() { DUMPOUT << endl; }template <class Head, class... Tail> void dump_func(Head &&head, Tail &&...tail) {DUMPOUT << head;if (sizeof...(Tail) > 0) DUMPOUT << ", ";dump_func(move(tail)...);}// chmax (更新「される」かもしれない値が前)template <typename T, typename U, typename Comp = less<>> bool chmax(T &xmax, const U &x, Comp comp = {}) {if (comp(xmax, x)) {xmax = x;return true;}return false;}// chmin (更新「される」かもしれない値が前)template <typename T, typename U, typename Comp = less<>> bool chmin(T &xmin, const U &x, Comp comp = {}) {if (comp(x, xmin)) {xmin = x;return true;}return false;}// ローカル用#ifndef ONLINE_JUDGE#define DEBUG_#endif#ifndef MYLOCAL#undef DEBUG_#endif#ifdef DEBUG_#define DEB#define dump(...) \DUMPOUT << " " << string(#__VA_ARGS__) << ": " \<< "[" << to_string(__LINE__) << ":" << __FUNCTION__ << "]" << endl \<< " ", \dump_func(__VA_ARGS__)#else#define DEB if (false)#define dump(...)#endif#define VAR(type, ...) \type __VA_ARGS__; \assert((std::cin >> __VA_ARGS__));template <typename T> istream &operator,(istream &is, T &rhs) { return is >> rhs; }template <typename T> ostream &operator,(ostream &os, const T &rhs) { return os << ' ' << rhs; }struct AtCoderInitialize {static constexpr int IOS_PREC = 15;static constexpr bool AUTOFLUSH = false;AtCoderInitialize() {ios_base::sync_with_stdio(false), std::cin.tie(nullptr), std::cout.tie(nullptr);std::cout << fixed << setprecision(IOS_PREC);if (AUTOFLUSH) std::cout << unitbuf;}} ATCODER_INITIALIZE;void Yn(bool p) { std::cout << (p ? "Yes" : "No") << endl; }void YN(bool p) { std::cout << (p ? "YES" : "NO") << endl; }template <typename T> constexpr void operator--(vc<T> &v, int) noexcept {for (int i = 0; i < ISIZE(v); ++i) v[i]--;}template <typename T> constexpr void operator++(vc<T> &v, int) noexcept {for (int i = 0; i < ISIZE(v); ++i) v[i]++;}/* #endregion */// #include <atcoder/all>// using namespace atcoder;/* #region Graph */// エッジ(本来エッジは双方向だが,ここでは単方向で管理)template <class weight_t = int, class flow_t = int> struct Edge {int src; // エッジ始点となる頂点int dst; // エッジ終点となる頂点weight_t weight; // 重みflow_t cap;Edge() : src(0), dst(0), weight(0) {}Edge(int src, int dst, weight_t weight) : src(src), dst(dst), weight(weight) {}Edge(int src, int dst, weight_t weight, flow_t cap) : src(src), dst(dst), weight(weight), cap(cap) {}// Edge 標準出力friend ostream &operator<<(ostream &os, Edge &edge) {os << "(" << edge.src << " -> " << edge.dst << ", " << edge.weight << ")";return os;}};// 同じ頂点を始点とするエッジ集合template <class weight_t = int, class flow_t = int> class Node : public vc<Edge<weight_t, flow_t>> {public:int idx;Node() : vc<Edge<weight_t, flow_t>>() {}// void add(int a, int b, weight_t w, flow_t cap) { this->emplace_back(a, b, w, cap); };};// graph[i] := 頂点 i を始点とするエッジ集合template <class weight_t = int, class flow_t = int> class Graph : public vc<Node<weight_t, flow_t>> {public:Graph() : vc<Node<weight_t, flow_t>>() {}Graph(int n) : vc<Node<weight_t, flow_t>>(n) { REP(i, 0, n)(*this)[i].idx = i; }/** 単方向 */void add_arc(int a, int b, weight_t w = 1, flow_t cap = 1) { (*this)[a].emplace_back(a, b, w, cap); }/** 双方向 */void add_edge(int a, int b, weight_t w = 1, flow_t cap = 1) { add_arc(a, b, w, cap), add_arc(b, a, w, cap); }/** ノード追加 */int add_node() {int idx = (int)this->size();this->emplace_back();Node<weight_t, flow_t> &node = this->back();node.idx = idx;return idx;}};// using Array = vc<Weight>;// using Matrix = vc<Array>;/* #endregion *//* #region Dijkstra */// ダイクストラ法// グラフを陽に持つtemplate <class Weight = ll> struct Dijkstra {// pair 比較よりも struct 比較のほうが速いstruct state {Weight cost;int dst;state(Weight cost, int dst) : cost(cost), dst(dst) {}bool operator<(const state &o) const { return cost > o.cost; }// bool operator>(const state &o) const { return cost > o.cost; }};Graph<Weight> graph;vc<Weight> dist;vc<int> bs; // 経路復元用情報Weight inf;/** コンストラクタ */Dijkstra(const int n, const Weight inf = INF) : graph(n), dist(n, inf), bs(n, -1), inf(inf) {}/** コンストラクタ,グラフを使って初期化するバージョン */Dijkstra(const Graph<Weight> &graph, const Weight inf = INF): graph(graph), dist(graph.size(), inf), bs(graph.size(), -1), inf(inf) {}// 有向辺の追加void add_edge(const int src, const int dst, const Weight cost) { graph.add_arc(src, dst, cost); }void build(const int start, const Weight init = 0) {priority_queue<state> que; // 昇順に並べ替え,小さい順に取り出すfill(ALL(dist), inf);fill(ALL(bs), -1);dist[start] = init;que.emplace(init, start);while (que.size()) {const state cur = que.top(); // tie(d, v) = que.top();que.pop();const int cur_node = cur.dst;const Weight cur_cost = cur.cost;if (dist[cur_node] < cur_cost) continue;for (const Edge<Weight> &edge : graph[cur_node])if (chmin(dist[edge.dst], dist[cur_node] + edge.weight)) {que.emplace(dist[edge.dst], edge.dst);bs[edge.dst] = cur_node;}}}// あるノードまでの距離を返すWeight operator[](const int dst) const { return dist[dst]; }// 経路復元// dst がスタート地点の場合は空ベクトルが返るため注意vc<int> restore(int dst) const {vc<int> res;if (bs[dst] < 0) return res;while (~dst) res.emplace_back(dst), dst = bs[dst];reverse(ALL(res));return res;}};/* #endregion *//* #region IntGeometry */// template <typename T = ll>struct P {using T = ll;T x, y;P() : x(0), y(0) {}P(const T x, const T y) : x(x), y(y) {}T real() const { return x; }T imag() const { return y; }P &operator+=(const P &a) {x += a.x;y += a.y;return *this;}P &operator-=(const P &a) {x -= a.x;y -= a.y;return *this;}P operator+(const P &a) const {P res(*this);return res += a;}P operator-(const P &a) const {P res(*this);return res -= a;}// norm の自乗を返すfriend T norm2(const P &a) { return a.x * a.x + a.y * a.y; }// norm を返すfriend ld norm(const P &a) { return sqrtl(a.x * a.x + a.y * a.y); }// 外積(の大きさ)を求めるfriend T cross(const P &a, const P &b) { return a.real() * b.imag() - a.imag() * b.real(); }// 内積を求めるfriend T dot(const P &a, const P &b) { return a.real() * b.real() + a.imag() * b.imag(); }// 偏角を求める.ただし 0 の偏角は求められない.// [-π, π] の範囲で返す.ld arg() const {assert(x != 0 || y != 0);return atan2<ld, ld>(y, x);}// base 方向を基準にした a の方向(a/base の偏角)を求める.// [-π, π] の範囲で返す.friend ld arg(const P &a, const P &base) {ld ans = a.arg() - base.arg();if (ans > PI) {ans -= PI * 2;}if (ans <= -PI) ans += PI * 2;return ans;}// 出力friend ostream &operator<<(ostream &os, const P a) {os << '(' << a.x << ", " << a.y << ')';return os;}// 象限を返す(偏角ソート用)int area_id() const {if (y < 0) {if (x > 0) return 4;return 3;}if (x < 0) return 2;return 1;}friend bool operator<(const P &p, const P &q) {const int ap = p.area_id();const int aq = q.area_id();if (ap != aq) {return ap < aq;}auto [px, py] = p;auto [qx, qy] = q;const T z = py * qx - qy * px;// p<q// <=> py/px < qy/qx (px, qx は同符号)// <=> py*qx < qy*px// <=> py*qx - qy*px < 0// return (z < 0);if (z != 0) return z < 0;return norm(p) < norm(q);}friend bool operator==(const P &left, const P &right) { return (left.x == right.x && left.y == right.y); }friend bool operator!=(const P &left, const P &right) { return !(left == right); }// 傾きが等しいかどうかbool r_eq(const P &another) const {// y/x == a.y/a.xreturn y * another.x == another.y * x;}// 偏角ソート用に r_eq を使用する// (傾きが等しい場合も座標としては等しくないので,left==rightとは書かないで r_eq() を使う)friend bool operator<=(const P &left, const P &right) { return ((left < right) || left.r_eq(right)); }};// using P = complex<ll>; // 2次元平面上の点// using G = vc<P>;/*CCW-- BEHIND -- [a -- ON -- b] --- FRONT --CW*/// CCW (Counter Clock Wise) 結果列挙体enum CCW_RESULT {CCW = +1, // 反時計回りCW = -1, // 時計回りBEHIND = +2, // 広報FRONT = -2, // 前方ON = 0 // 2点間};// ベクトル A→B を基準に,点 C がどの方向にあるか(反時計回りかどうか)を調べる.// 反時計回り ― 延長線上 ― 時計回り,で 1, 0, -1 を返す.CCW_RESULT ccw(P a, P b, P c) {b -= a;c -= a;if (cross(b, c) > 0) return CCW; // counter clockwiseif (cross(b, c) < 0) return CW; // clockwiseif (dot(b, c) < 0) return BEHIND; // c--a--b on lineif (norm(b) < norm(c)) return FRONT; // a--b--c on linereturn ON;}/* #endregion */using C = P;// a is in b and c ?bool is_in(C a, C b, C c) {if (a == b) return true;if (a == c) return true;C v0 = b - a;C v1 = c - a;if (cross(v0, v1) != 0) return false; // 同一線上にないif (dot(v0, v1) < 0) return true; // 逆向きならinreturn false;}// ベクトル p0->p1, q0->q1bool is_intersect(C p0, C p1, C q0, C q1) {{// 同じ点があるなら交差if (p0 == p1) return true;if (p0 == q0) return true;if (p0 == q1) return true;if (p1 == q0) return true;if (p1 == q1) return true;if (q0 == q1) return true;}bool is_parallel = false;{C v = p0 - p1;C w = q0 - q1;if (cross(v, w) == 0) is_parallel = true;}if (is_parallel) {// 包含・重なり・ギリギリ接触を交差とするif (is_in(p0, q0, q1)) return true;if (is_in(p1, q0, q1)) return true;if (is_in(q0, p0, p1)) return true;if (is_in(q1, p0, p1)) return true;return false;}// 以降、平行ではないとする// p側から見た交差チェックauto v0 = p1 - p0;auto v1 = q0 - p0;auto v2 = q1 - p0;if (cross(v0, v1) * cross(v0, v2) > 0) {return false;}// q側から見た交差チェックv0 = q1 - q0;v1 = p0 - q0;v2 = p1 - q0;if (cross(v0, v1) * cross(v0, v2) > 0) {return false;}return true;}// Problemvoid solve() {VAR(ll, n, m);vll x1(n), y1(n), x2(n), y2(n);REP(i, 0, n) cin >> x1[i], y1[i], x2[i], y2[i];vll a(m), b(m), c(m), d(m);REP(i, 0, m) cin >> a[i], b[i], c[i], d[i];a--, b--, c--, d--;Graph<ld> graph(n * 2);// 線分同士の交差判定ができればよい.vc<array<P, 2>> lines(n);REP(i, 0, n) lines[i] = {P(x1[i], y1[i]), P(x2[i], y2[i])};// player は lines[a[i]][b[i]] から lines[c[i]][d[i]] へ移動する// 直線間の移動REP(i, 0, n - 1) REP(j, i + 1, n) {// iの端点→jの端点 を調査する.REP(i01, 0, 2) REP(j01, 0, 2) {// 他の線分と交差しないか?bool ok = true;REP(k, 0, n) {if (k == i || k == j) continue; //if (is_intersect(lines[i][i01], lines[j][j01], lines[k][0], lines[k][1])) {ok = false;break;}}if (ok) {ld dist = norm(lines[i][i01] - lines[j][j01]);// dump(i * 2 + i01, j * 2 + j01, dist);graph.add_edge(i * 2 + i01, j * 2 + j01, dist);}}}// 直線内の移動REP(i, 0, n) {// 他の線分と交差しないか?bool ok = true;REP(k, 0, n) {if (k == i) continue; //if (is_intersect(lines[i][0], lines[i][1], lines[k][0], lines[k][1])) {ok = false;break;}}if (ok) {ld dist = norm(lines[i][1] - lines[i][0]);// dump(i * 2, i * 2 + 1, dist);graph.add_edge(i * 2, i * 2 + 1, dist);}}// 参加者を集計するvvll players(2 * n);REP(i, 0, m) {players[a[i] * 2 + b[i]].push_back(i); //}Dijkstra<ld> dijkstra(graph, numeric_limits<ld>::max());vc<ld> ans(m);REP(ii, 0, n * 2) {if (SIZE(players[ii]) == 0) continue;// 距離を計算するdijkstra.build(ii, 0.0l);// dump(ii, dijkstra.dist);for (const auto player_idx : players[ii]) {ans[player_idx] = dijkstra[c[player_idx] * 2 + d[player_idx]];dump(c[player_idx] * 2 + d[player_idx]);}}// outputREP(i, 0, m) {pprint(ans[i]); //}}// entry pointint main() {solve();return 0;}