結果
| 問題 |
No.2376 障害物競プロ
|
| コンテスト | |
| ユーザー |
kwm_t
|
| 提出日時 | 2023-07-08 00:05:04 |
| 言語 | C++17 (gcc 13.3.0 + boost 1.87.0) |
| 結果 |
AC
|
| 実行時間 | 1,186 ms / 4,000 ms |
| コード長 | 12,418 bytes |
| コンパイル時間 | 4,819 ms |
| コンパイル使用メモリ | 271,852 KB |
| 最終ジャッジ日時 | 2025-02-15 08:41:52 |
|
ジャッジサーバーID (参考情報) |
judge2 / judge2 |
(要ログイン)
| ファイルパターン | 結果 |
|---|---|
| sample | AC * 4 |
| other | AC * 40 |
ソースコード
#include <bits/stdc++.h>
#include <atcoder/all>
using namespace std;
using namespace atcoder;
//using mint = modint1000000007;
//const int mod = 1000000007;
//using mint = modint998244353;
//const int mod = 998244353;
const int INF = 1e9;
const long long LINF = 1e18;
//const bool debug = false;
#define rep(i, n) for (int i = 0; i < (n); ++i)
#define rep2(i,l,r)for(int i=(l);i<(r);++i)
#define rrep(i, n) for (int i = (n-1); i >= 0; --i)
#define rrep2(i,l,r)for(int i=(r-1);i>=(l);--i)
#define all(x) (x).begin(),(x).end()
#define allR(x) (x).rbegin(),(x).rend()
#define endl "\n"
#define P pair<int,int>
template<typename A, typename B> inline bool chmax(A & a, const B & b) { if (a < b) { a = b; return true; } return false; }
template<typename A, typename B> inline bool chmin(A & a, const B & b) { if (a > b) { a = b; return true; } return false; }
namespace geometry {
//https://siro53.github.io/compro_library/geometry/geometry.hpp
// 定義's
using D = long double;
using Point = complex<D>;
const D EPS = 1e-7;
const D PI = acosl(-1);
Point operator*(const Point &p, const D &d) { return Point(real(p) * d, imag(p) * d); }
D distancePoint(const Point &p, const Point &q) {
return sqrt((p.imag() - q.imag()) * (p.imag() - q.imag()) + (p.real() - q.real()) * (p.real() - q.real()));
}
// double 一致判定
bool equal(const D& lh, const D& rh) { return fabs(lh - rh) < EPS; }
// 単位ベクトル
Point unitVector(const Point &v) { return v / abs(v); }
// 法線ベクトル(90度回転)
Point normalVector(const Point &v) { return v * Point(0, 1); }
// 内積
D dot(const Point &lh, const Point&rh) { return lh.real() * rh.real() + lh.imag() * rh.imag(); }
// 外積
D cross(const Point &lh, const Point&rh) { return lh.real() * rh.imag() - lh.imag() * rh.real(); }
// 反時計回りにθ(ラジアン)回転
Point rotate(const Point &p, const D &theta) { return Point(cos(theta) * p.real() - sin(theta) * p.imag(), sin(theta) * p.real() + cos(theta) * p.imag()); }
// ラジアン->度
D rTOd(const D &radian) { return radian * 180.0 / PI; }
// 度->ラジアン
D dTOr(const D & degree) { return degree * PI / 180.0; }
// 位置関係(aを基準)
int positional(const Point &a, Point b, Point c) {
b -= a, c -= a;
//a,b,cが反時計回りに存在する
if (cross(b, c) > EPS)return 1;
//a,b,cが時計回りに存在する
if (cross(b, c) < -EPS)return -1;
// c-a-b
if (dot(b, c) < 0)return 2;
// a-b-c
if (norm(b) < norm(c))return -2;
// a-c-b
return 0;
}
// 構造体's
// 直線(a,bの2点を通る)
struct Line {
Point a, b;
Line() = default;
Line(Point _a, Point _b) :a(_a), b(_b) {}
// ax + by = c
Line(D _a, D _b, D _c) {
if (equal(_a, 0)) a = Point(0, _c / _b), b = Point(1, _c / _b);
else if (equal(_b, 0)) a = Point(_c / _a, 0), b = Point(_c / _a, 1);
else if (equal(_c, 0)) a = Point(), b = Point(_b, -_a);
else a = Point(0, _c / _b), b = Point(_c / _a, 0);
}
};
// 線分
struct Segment :Line {
Segment() = default;
Segment(Point a, Point b) :Line(a, b) {}
D SegSize() { return abs(a - b); }
};
// 円
struct Circle {
Point p;
D r;
Circle() = default;
Circle(Point _p, D _r) :p(_p), r(_r) {}
};
// 2直線の直行判定(内積 = 0)
bool isOrthogonal(const Line & lh, const Line & rh) { return equal(0, dot(lh.b - lh.a, rh.b - rh.a)); }
// 2直線の並行判定(外積 = 0)
bool isParallel(const Line & lh, const Line & rh) { return equal(0, cross(lh.b - lh.a, rh.b - rh.a)); }
// 点cが直線ab上にあるか
bool isPointOnLine(const Point &a, const Point &b, const Point &c) { return isParallel(Line(a, b), Line(a, c)); }
// 点cが線分ab上にあるか
bool isPointOnSegment(const Point &a, const Point &b, const Point &c) { return (abs(a - c) + abs(c - b) < abs(a - b) + EPS); }
// 直線と点の距離
D distanceLineAndPoint(const Line &l, const Point &p) { return abs(cross(l.b - l.a, p - l.a)) / abs(l.b - l.a); }
// 線分と点の距離
D distanceSegmentAndPoint(const Segment &l, const Point &p) {
if (dot(l.b - l.a, p - l.a) < EPS) return abs(p - l.a);
if (dot(l.a - l.b, p - l.b) < EPS) return abs(p - l.b);
return distanceLineAndPoint(l, p);
}
// 直線と直線の交点
Point crossPoint(const Line &s, const Line &t) {
D d1 = cross(s.b - s.a, t.b - t.a);
D d2 = cross(s.b - s.a, s.b - t.a);
if (equal(abs(d1), 0) && equal(abs(d2), 0)) return t.a;
return t.a + (t.b - t.a) * (d2 / d1);
}
// 線分と線分の交点
Point crossPoint(const Segment &s, const Segment &t) {
return crossPoint(Line(s), Line(t));
}
// 線分sと線分tが交差しているかどうか
// bound:線分の端点を含むか
bool isIntersect(const Segment &s, const Segment &t, bool bound) {
return positional(s.a, s.b, t.a) * positional(s.a, s.b, t.b) < bound &&
positional(t.a, t.b, s.a) * positional(t.a, t.b, s.b) < bound;
}
// 線分sとtの距離
D distanceBetweenSegments(const Segment &s, const Segment &t) {
if (isIntersect(s, t, 1)) return (D)(0);
D ans = distanceSegmentAndPoint(s, t.a);
chmin(ans, distanceSegmentAndPoint(s, t.b));
chmin(ans, distanceSegmentAndPoint(t, s.a));
chmin(ans, distanceSegmentAndPoint(t, s.b));
return ans;
}
// 射影(projection)
// 直線(線分)lに点pから引いた垂線の足を求める
Point projection(const Line &l, const Point &p) {
D t = dot(p - l.a, l.a - l.b) / norm(l.a - l.b);
return l.a + (l.a - l.b) * t;
}
Point projection(const Segment &l, const Point &p) {
D t = dot(p - l.a, l.a - l.b) / norm(l.a - l.b);
return l.a + (l.a - l.b) * t;
}
// 反射(reflection)
// 直線lを対称軸として点pと線対称の位置にある点を求める
Point reflection(const Line &l, const Point &p) {
return p + (projection(l, p) - p) * (D)2.0;
}
// 2つの円の交差判定
// 返り値は共通接線の数
int isIntersect(const Circle &c1, const Circle &c2) {
D d = abs(c1.p - c2.p);
// 2つの円が離れている場合
if (d > c1.r + c2.r + EPS) return 4;
// 外接している場合
if (equal(d, c1.r + c2.r)) return 3;
// 内接している場合
if (equal(d, abs(c1.r - c2.r))) return 1;
// 内包している場合
if (d < abs(c1.r - c2.r) - EPS) return 0;
return 2;
}
// 2つの円の交点
vector<Point> crossPoint(const Circle &c1, const Circle &c2) {
vector<Point> res;
int mode = isIntersect(c1, c2);
// 2つの中心の距離
D d = abs(c1.p - c2.p);
// 2円が離れている場合
if (mode == 4) return res;
// 1つの円がもう1つの円に内包されている場合
if (mode == 0) return res;
// 2円が外接する場合
if (mode == 3) {
D t = c1.r / (c1.r + c2.r);
res.emplace_back(c1.p + (c2.p - c1.p) * t);
return res;
}
// 内接している場合
if (mode == 1) {
if (c2.r < c1.r - EPS) {
res.emplace_back(c1.p + (c2.p - c1.p) * (c1.r / d));
}
else {
res.emplace_back(c2.p + (c1.p - c2.p) * (c2.r / d));
}
return res;
}
// 2円が重なる場合
D rc1 = (c1.r * c1.r + d * d - c2.r * c2.r) / (2 * d);
D rs1 = sqrt(c1.r * c1.r - rc1 * rc1);
if (c1.r - abs(rc1) < EPS) rs1 = 0;
Point e12 = (c2.p - c1.p) / abs(c2.p - c1.p);
res.emplace_back(c1.p + rc1 * e12 + rs1 * e12 * Point(0, 1));
res.emplace_back(c1.p + rc1 * e12 + rs1 * e12 * Point(0, -1));
return res;
}
// 点pが円cの内部(円周上も含む)に入っているかどうか
bool isInCircle(const Circle &c, const Point &p) {
D d = abs(c.p - p);
return (equal(d, c.r) || d < c.r - EPS);
}
// 円cと直線lの交点
vector<Point> crossPoint(const Circle &c, const Line &l) {
vector<Point> res;
D d = distanceLineAndPoint(l, c.p);
// 交点を持たない
if (d > c.r + EPS) return res;
// 接する
Point h = projection(l, c.p);
if (equal(d, c.r)) {
res.emplace_back(h);
return res;
}
Point e = unitVector(l.b - l.a);
D ph = sqrt(c.r * c.r - d * d);
res.emplace_back(h - e * ph);
res.emplace_back(h + e * ph);
return res;
}
// 絶対2つ返す
pair<Point, Point> crosspoint(const Circle &c, const Line l) {
Point pr = projection(l, c.p);
Point e = (l.b - l.a) / abs(l.b - l.a);
if (equal(distanceLineAndPoint(l, c.p), c.r)) return { pr, pr };
double base = sqrt(c.r * c.r - norm(pr - c.p));
return { pr - e * base, pr + e * base };
}
// 点pを通る円cの接線
// 2本あるので、接点のみを返す
vector<Point> tangentToCircle(const Point &p, const Circle &c) {
return crossPoint(c, Circle(p, sqrt(norm(c.p - p) - c.r * c.r)));
}
// 円の共通接線
vector<Line> tangent(const Circle &a, const Circle &b) {
vector<Line> ret;
// 2円の中心間の距離
D g = abs(a.p - b.p);
// 円が内包されている場合
if (equal(g, 0)) return ret;
Point u = unitVector(b.p - a.p);
Point v = rotate(u, PI / 2);
for (int s : {-1, 1}) {
D h = (a.r + b.r * s) / g;
if (equal(h * h, 1)) {
ret.emplace_back(a.p + (h > 0 ? u : -u) * a.r,
a.p + (h > 0 ? u : -u) * a.r + v);
}
else if (1 - h * h > 0) {
Point U = u * h, V = v * sqrt(1 - h * h);
ret.emplace_back(a.p + (U + V) * a.r,
b.p - (U + V) * (b.r * s));
ret.emplace_back(a.p + (U - V) * a.r,
b.p - (U - V) * (b.r * s));
}
}
return ret;
}
// 多角形の面積を求める
D PolygonArea(const vector<Point> &p) {
D res = 0;
int n = p.size();
for (int i = 0; i < n; i++) res += cross(p[i], p[(i + 1) % n]);
return res * 0.5;
}
// 凸多角形かどうか
bool isConvex(const vector<Point> &p) {
int n = p.size();
int now, pre, nxt;
for (int i = 0; i < n; i++) {
pre = (i - 1 + n) % n;
nxt = (i + 1) % n;
now = i;
if (positional(p[pre], p[now], p[nxt]) == -1) return false;
}
return true;
}
// 凸包 O(NlogN)
vector<Point> ConvexHull(vector<Point> p) {
int n = (int)p.size(), k = 0;
sort(all(p), [](const Point &a, const Point &b) {
return (real(a) != real(b) ? real(a) < real(b) : imag(a) < imag(b));
});
vector<Point> ch(2 * n);
// 一直線上の3点を含める -> (< -EPS)
// 含め無い -> (< EPS)
for (int i = 0; i < n; ch[k++] = p[i++]) { // lower
while (k >= 2 &&
cross(ch[k - 1] - ch[k - 2], p[i] - ch[k - 1]) < EPS)
--k;
}
for (int i = n - 2, t = k + 1; i >= 0; ch[k++] = p[i--]) { // upper
while (k >= t &&
cross(ch[k - 1] - ch[k - 2], p[i] - ch[k - 1]) < EPS)
--k;
}
ch.resize(max(0, k - 1));
return ch;
}
// 多角形gに点pが含まれているか?
// 含まれる:2, 辺上にある:1, 含まれない:0
int isContained(const vector<Point> &g, const Point &p) {
bool in = false;
int n = (int)g.size();
for (int i = 0; i < n; i++) {
Point a = g[i] - p, b = g[(i + 1) % n] - p;
if (imag(a) > imag(b)) swap(a, b);
if (imag(a) <= EPS && EPS < imag(b) && cross(a, b) < -EPS) in = !in;
if (cross(a, b) == 0 && dot(a, b) <= 0) return 1;
}
return (in ? 2 : 0);
}
// 凸多角形pを直線lで切断し、その左側を返す
vector<Point> ConvexCut(vector<Point> p, Line l) {
vector<Point> ret;
int sz = (int)p.size();
rep(i, sz) {
Point now = p[i];
Point nxt = p[i == sz - 1 ? 0 : i + 1];
if (positional(l.a, l.b, now) != -1) ret.emplace_back(now);
if (positional(l.a, l.b, now) * positional(l.a, l.b, nxt) < 0) {
ret.emplace_back(crossPoint(Line(now, nxt), l));
}
}
return ret;
}
}
using namespace geometry;
int main() {
ios::sync_with_stdio(false);
cin.tie(nullptr);
int n, m; cin >> n >> m;
vector<int>x(n * 2), y(n * 2);
rep(i, n) cin >> x[i] >> y[i] >> x[i + n] >> y[i + n];
vector dist(n * 2, vector<long double>(n * 2, LINF));
rep(i, 2 * n)rep(j, 2 * n) {
if (i == j)dist[i][j] = 0;
else {
bool chk = true;
Point p00(x[i], y[i]);
Point p01(x[j], y[j]);
rep(k, n) {
if ((k == i % n) && (k == j % n))continue;
Point p10(x[k], y[k]);
Point p11(x[k + n], y[k + n]);
Segment s0(p00, p01);
Segment s1(p10, p11);
if (isIntersect(s0, s1, false))chk = false;
}
if (chk) dist[i][j] = distancePoint(p00, p01);
}
}
// warshall_floyd
rep(k, n * 2) rep(i, n * 2)rep(j, n * 2) {
dist[i][j] = min(dist[i][j], dist[i][k] + dist[k][j]);
}
rep(i, m) {
int a, b, c, d; cin >> a >> b >> c >> d;
a--, b--, c--, d--;
int idx0 = a;
if (b)idx0 += n;
int idx1 = c;
if (d)idx1 += n;
cout << setprecision(16) << dist[idx0][idx1] << endl;
}
return 0;
}
kwm_t