結果

問題 No.1778 括弧列クエリ / Bracketed Sequence Query
ユーザー swapfloorswapfloor
提出日時 2023-07-10 19:14:12
言語 C++17
(gcc 12.3.0 + boost 1.83.0)
結果
AC  
実行時間 105 ms / 2,000 ms
コード長 20,079 bytes
コンパイル時間 2,912 ms
コンパイル使用メモリ 219,996 KB
実行使用メモリ 24,076 KB
最終ジャッジ日時 2024-09-12 23:48:50
合計ジャッジ時間 9,467 ms
ジャッジサーバーID
(参考情報)
judge1 / judge3
このコードへのチャレンジ
(要ログイン)

テストケース

テストケース表示
入力 結果 実行時間
実行使用メモリ
testcase_00 AC 53 ms
6,812 KB
testcase_01 AC 53 ms
6,940 KB
testcase_02 AC 53 ms
6,940 KB
testcase_03 AC 46 ms
6,940 KB
testcase_04 AC 56 ms
6,940 KB
testcase_05 AC 49 ms
7,048 KB
testcase_06 AC 30 ms
6,944 KB
testcase_07 AC 6 ms
6,940 KB
testcase_08 AC 97 ms
12,352 KB
testcase_09 AC 14 ms
6,944 KB
testcase_10 AC 47 ms
10,020 KB
testcase_11 AC 39 ms
8,088 KB
testcase_12 AC 52 ms
6,940 KB
testcase_13 AC 91 ms
12,188 KB
testcase_14 AC 40 ms
9,344 KB
testcase_15 AC 2 ms
6,940 KB
testcase_16 AC 98 ms
12,352 KB
testcase_17 AC 98 ms
12,352 KB
testcase_18 AC 98 ms
12,356 KB
testcase_19 AC 97 ms
12,356 KB
testcase_20 AC 98 ms
12,348 KB
testcase_21 AC 2 ms
6,944 KB
testcase_22 AC 2 ms
6,944 KB
testcase_23 AC 70 ms
10,536 KB
testcase_24 AC 75 ms
12,476 KB
testcase_25 AC 86 ms
12,480 KB
testcase_26 AC 105 ms
24,076 KB
testcase_27 AC 79 ms
24,036 KB
権限があれば一括ダウンロードができます

ソースコード

diff #

// #pragma GCC optimize(3) // 如果是acwing
// 建议开一下03优化,卡常oj是这样的,牛子随便过

#include <bits/stdc++.h>

using namespace std;

using ll = long long;
using u32 = unsigned int;
using u64 = unsigned long long;
using i128 = __int128;

template <class T>
constexpr T infty = 0;
template <>
constexpr int infty<int> = 1'000'000'000;
template <>
constexpr ll infty<ll> = ll(infty<int>) * infty<int> * 2;
template <>
constexpr u32 infty<u32> = infty<int>;
template <>
constexpr u64 infty<u64> = infty<ll>;
template <>
constexpr i128 infty<i128> = i128(infty<ll>) * infty<ll>;
template <>
constexpr double infty<double> = infty<ll>;
template <>
constexpr long double infty<long double> = infty<ll>;

using pi = pair<ll, ll>;
using vi = vector<ll>;
template <class T>
using vc = vector<T>;
template <class T>
using vvc = vector<vc<T>>;
template <class T>
using vvvc = vector<vvc<T>>;
template <class T>
using vvvvc = vector<vvvc<T>>;
template <class T>
using vvvvvc = vector<vvvvc<T>>;
template <class T>
using pq = priority_queue<T>;
template <class T>
using pqg = priority_queue<T, vector<T>, greater<T>>;

#define vv(type, name, h, ...) \
  vector<vector<type>> name(h, vector<type>(__VA_ARGS__))
#define vvv(type, name, h, w, ...)   \
  vector<vector<vector<type>>> name( \
      h, vector<vector<type>>(w, vector<type>(__VA_ARGS__)))
#define vvvv(type, name, a, b, c, ...)       \
  vector<vector<vector<vector<type>>>> name( \
      a, vector<vector<vector<type>>>(       \
             b, vector<vector<type>>(c, vector<type>(__VA_ARGS__))))

// https://trap.jp/post/1224/ 类似 Python
#define FOR1(a) for (ll _ = 0; _ < ll(a); ++_)
#define FOR2(i, a) for (ll i = 0; i < ll(a); ++i)
#define FOR3(i, a, b) for (ll i = a; i < ll(b); ++i)
#define FOR4(i, a, b, c) for (ll i = a; i < ll(b); i += (c))
#define FOR1_R(a) for (ll i = (a)-1; i >= ll(0); --i)
#define FOR2_R(i, a) for (ll i = (a)-1; i >= ll(0); --i)
#define FOR3_R(i, a, b) for (ll i = (b)-1; i >= ll(a); --i)
#define overload4(a, b, c, d, e, ...) e
#define overload3(a, b, c, d, ...) d
#define FOR(...) overload4(__VA_ARGS__, FOR4, FOR3, FOR2, FOR1)(__VA_ARGS__)
#define FOR_R(...) overload3(__VA_ARGS__, FOR3_R, FOR2_R, FOR1_R)(__VA_ARGS__)

#define FOR_subset(t, s) \
  for (ll t = (s); t >= 0; t = (t == 0 ? -1 : (t - 1) & (s)))
#define all(x) x.begin(), x.end()
#define len(x) ll(x.size())
#define elif else if

#define eb emplace_back
#define mp make_pair
#define mt make_tuple
#define fi first
#define se second

#define INT(...)   \
  int __VA_ARGS__; \
  IN(__VA_ARGS__)
#define INTd(...)  \
  int __VA_ARGS__; \
  IN2(__VA_ARGS__)
#define LL(...)   \
  ll __VA_ARGS__; \
  IN(__VA_ARGS__)
#define LLd(...)  \
  ll __VA_ARGS__; \
  IN2(__VA_ARGS__)
#define STR(...)      \
  string __VA_ARGS__; \
  IN(__VA_ARGS__)
#define CHR(...)    \
  char __VA_ARGS__; \
  IN(__VA_ARGS__)
#define DBL(...)      \
  double __VA_ARGS__; \
  IN(__VA_ARGS__)
#define VEC(type, name, size) \
  vector<type> name(size);    \
  IN(name)
#define VECd(type, name, size) \
  vector<type> name(size);     \
  IN2(name)
#define VEC2(type, name1, name2, size)   \
  vector<type> name1(size), name2(size); \
  for (int i = 0; i < size; i++) IN(name1[i], name2[i])
#define VEC2d(type, name1, name2, size)  \
  vector<type> name1(size), name2(size); \
  for (int i = 0; i < size; i++) IN2(name1[i], name2[i])
#define VEC3(type, name1, name2, name3, size)         \
  vector<type> name1(size), name2(size), name3(size); \
  for (int i = 0; i < size; i++) IN(name1[i], name2[i], name3[i])
#define VEC3d(type, name1, name2, name3, size)        \
  vector<type> name1(size), name2(size), name3(size); \
  for (int i = 0; i < size; i++) IN2(name1[i], name2[i], name3[i])
#define VEC4(type, name1, name2, name3, name4, size)               \
  vector<type> name1(size), name2(size), name3(size), name4(size); \
  for (int i = 0; i < size; i++) IN(name1[i], name2[i], name3[i], name4[i]);
#define VEC4d(type, name1, name2, name3, name4, size)              \
  vector<type> name1(size), name2(size), name3(size), name4(size); \
  for (int i = 0; i < size; i++) IN2(name1[i], name2[i], name3[i], name4[i]);
#define VV(type, name, h, w)                     \
  vector<vector<type>> name(h, vector<type>(w)); \
  IN(name)
#define VVd(type, name, h, w)                    \
  vector<vector<type>> name(h, vector<type>(w)); \
  IN2(name)
int scan() { return getchar(); }
void scan(int &a) { cin >> a; }
void scan(long long &a) { cin >> a; }
void scan(char &a) { cin >> a; }
void scan(double &a) { cin >> a; }
void scan(string &a) { cin >> a; }
template <class T, class S>
void scan(pair<T, S> &p) {
  scan(p.first), scan(p.second);
}
template <class T>
void scan(vector<T> &);
template <class T>
void scan(vector<T> &a) {
  for (auto &i : a) scan(i);
}
template <class T>
void scan(T &a) {
  cin >> a;
}
void IN() {}
void IN2() {}
template <class Head, class... Tail>
void IN(Head &head, Tail &...tail) {
  scan(head);
  IN(tail...);
}
template <class Head, class... Tail>
void IN2(Head &head, Tail &...tail) {
  scan(head);
  --head;
  IN2(tail...);
}
template <class U, class V>
std::ostream &operator<<(std::ostream &os, const std::pair<U, V> &pr) {
  return os << pr.first << ' ' << pr.second;
}
template <class U, class V>
std::istream &operator>>(std::istream &is, std::pair<U, V> &pr) {
  return is >> pr.first >> pr.second;
}
template <class T>
std::ostream &operator<<(std::ostream &os, const std::initializer_list<T> &a) {
  for (auto it = a.begin(); it != a.end();) {
    os << *it;
    it++;
    if (it != a.end()) os << ' ';
  }
  return os;
}
template <class T>
std::ostream &operator<<(
    std::ostream &os,
    const std::initializer_list<std::initializer_list<T>> &a) {
  for (const auto &x : a) os << x << ' ';
  return os;
}
template <class T>
std::ostream &operator<<(std::ostream &os, const std::vector<T> &a) {
  FOR(i, a.size()) {
    if (i) os << ' ';
    os << a[i];
  }
  return os;
}
template <class T>
std::istream &operator>>(std::istream &is, std::vector<T> &a) {
  FOR(i, a.size()) { is >> a[i]; }
  return is;
}
void OUT() { cout << '\n'; }
template <class Head, class... Tail>
void OUT(const Head &head, const Tail &...tail) {
  cout << head;
  if (sizeof...(tail)) cout << ' ';
  OUT(tail...);
}
void close_sync() {
  ios::sync_with_stdio(false);
  cin.tie(nullptr);
}

int popcnt(int x) { return __builtin_popcount(x); }
int popcnt(u32 x) { return __builtin_popcount(x); }
int popcnt(ll x) { return __builtin_popcountll(x); }
int popcnt(u64 x) { return __builtin_popcountll(x); }
// (0, 1, 2, 3, 4) -> (-1, 0, 1, 1, 2)
int topbit(int x) { return (x == 0 ? -1 : 31 - __builtin_clz(x)); }
int topbit(u32 x) { return (x == 0 ? -1 : 31 - __builtin_clz(x)); }
int topbit(ll x) { return (x == 0 ? -1 : 63 - __builtin_clzll(x)); }
int topbit(u64 x) { return (x == 0 ? -1 : 63 - __builtin_clzll(x)); }
// (0, 1, 2, 3, 4) -> (-1, 0, 1, 0, 2)
int lowbit(int x) { return (x == 0 ? -1 : __builtin_ctz(x)); }
int lowbit(u32 x) { return (x == 0 ? -1 : __builtin_ctz(x)); }
int lowbit(ll x) { return (x == 0 ? -1 : __builtin_ctzll(x)); }
int lowbit(u64 x) { return (x == 0 ? -1 : __builtin_ctzll(x)); }

template <typename T, typename U>
T ceil(T x, U y) {
  return (x > 0 ? (x + y - 1) / y : x / y);
}
template <typename T, typename U>
T floor(T x, U y) {
  return (x > 0 ? x / y : (x - y + 1) / y);
}
template <typename T, typename U>
pair<T, T> divmod(T x, U y) {
  T q = floor(x, y);
  return {q, x - q * y};
}

template <typename T, typename U>
T SUM(const vector<U> &A) {
  T sum = 0;
  for (auto &&a : A) sum += a;
  return sum;
}

#define MIN(v) *min_element(all(v))
#define MAX(v) *max_element(all(v))
#define LB(c, x) distance((c).begin(), lower_bound(all(c), (x)))
#define UB(c, x) distance((c).begin(), upper_bound(all(c), (x)))
#define UNIQUE(x) \
  sort(all(x)), x.erase(unique(all(x)), x.end()), x.shrink_to_fit()

template <typename T>
T POP(deque<T> &que) {
  T a = que.front();
  que.pop_front();
  return a;
}
template <typename T>
T POP(pq<T> &que) {
  T a = que.top();
  que.pop();
  return a;
}
template <typename T>
T POP(pqg<T> &que) {
  assert(!que.empty());
  T a = que.top();
  que.pop();
  return a;
}
template <typename T>
T POP(vc<T> &que) {
  assert(!que.empty());
  T a = que.back();
  que.pop_back();
  return a;
}

template <typename F>
ll binary_search(F check, ll ok, ll ng, bool check_ok = true) {
  if (check_ok) assert(check(ok));
  while (abs(ok - ng) > 1) {
    auto x = (ng + ok) / 2;
    tie(ok, ng) = (check(x) ? mp(x, ng) : mp(ok, x));
  }
  return ok;
}
template <typename F>
double binary_search_real(F check, double ok, double ng, int iter = 100) {
  FOR(iter) {
    double x = (ok + ng) / 2;
    tie(ok, ng) = (check(x) ? mp(x, ng) : mp(ok, x));
  }
  return (ok + ng) / 2;
}

template <class T, class S>
inline bool chmax(T &a, const S &b) {
  return (a < b ? a = b, 1 : 0);
}
template <class T, class S>
inline bool chmin(T &a, const S &b) {
  return (a > b ? a = b, 1 : 0);
}

// ? 即 -1
vc<int> s_to_vi(const string &S, char first_char) {
  vc<int> A(S.size());
  FOR(i, S.size()) { A[i] = (S[i] != '?' ? S[i] - first_char : -1); }
  return A;
}

// 前缀和
template <typename T, typename U>
vector<T> cumsum(vector<U> &A, int off = 1) {
  int N = A.size();
  vector<T> B(N + 1);
  FOR(i, N) { B[i + 1] = B[i] + A[i]; }
  if (off == 0) B.erase(B.begin());
  return B;
}

// stable sort 稳定排序 即系数排序
template <typename T>
vector<int> argsort(const vector<T> &A) {
  vector<int> ids(len(A));
  iota(all(ids), 0);
  sort(all(ids),
       [&](int i, int j) { return (A[i] == A[j] ? i < j : A[i] < A[j]); });
  return ids;
}

// A[I[0]], A[I[1]], ...
template <typename T>
vc<T> rearrange(const vc<T> &A, const vc<int> &I) {
  vc<T> B(len(I));
  FOR(i, len(I)) B[i] = A[I[i]];
  return B;
}

template <typename T>
struct Edge {
  int frm, to;
  T cost;
  int id;
};
template <typename T = int, bool directed = false>
struct Graph {
  int N, M;
  using cost_type = T;
  using edge_type = Edge<T>;
  vector<edge_type> edges;
  vector<int> indptr;
  vector<edge_type> csr_edges;
  vc<int> vc_deg, vc_indeg, vc_outdeg;
  bool prepared;

  class OutgoingEdges {  // 邻接表
   public:
    OutgoingEdges(const Graph *G, int l, int r) : G(G), l(l), r(r) {}

    const edge_type *begin() const {
      if (l == r) {
        return 0;
      }
      return &G->csr_edges[l];
    }

    const edge_type *end() const {
      if (l == r) {
        return 0;
      }
      return &G->csr_edges[r];
    }

   private:
    const Graph *G;
    int l, r;
  };

  bool is_prepared() { return prepared; }
  constexpr bool is_directed() { return directed; }

  Graph() : N(0), M(0), prepared(0) {}
  Graph(int N) : N(N), M(0), prepared(0) {}

  void build(int n) {
    N = n, M = 0;
    prepared = 0;
    edges.clear();
    indptr.clear();
    csr_edges.clear();
    vc_deg.clear();
    vc_indeg.clear();
    vc_outdeg.clear();
  }

  void add(int frm, int to, T cost = 1, int i = -1) {
    assert(!prepared);
    assert(0 <= frm && 0 <= to && to < N);
    if (i == -1) i = M;
    auto e = edge_type({frm, to, cost, i});
    edges.eb(e);
    ++M;
  }

  // wt 是否有权,off 偏移默认为 1
  void read_tree(bool wt = false, int off = 1) { read_graph(N - 1, wt, off); }

  // 读入,M 边数,wt 是否有权,off 偏移默认为 1
  void read_graph(int M, bool wt = false, int off = 1) {
    for (int m = 0; m < M; ++m) {
      INT(a, b);
      a -= off, b -= off;
      if (!wt) {
        add(a, b);
      } else {
        T c;
        IN(c);
        add(a, b, c);
      }
    }
    build();
  }

  void read_parent(int off = 1) {
    for (int v = 1; v < N; ++v) {
      INT(p);
      p -= off;
      add(p, v);
    }
    build();
  }

  void build() {  // 构建图
    assert(!prepared);
    prepared = true;
    indptr.assign(N + 1, 0);
    for (auto &&e : edges) {
      indptr[e.frm + 1]++;
      if (!directed) indptr[e.to + 1]++;
    }
    for (int v = 0; v < N; ++v) {
      indptr[v + 1] += indptr[v];
    }
    auto counter = indptr;
    csr_edges.resize(indptr.back() + 1);
    for (auto &&e : edges) {
      csr_edges[counter[e.frm]++] = e;
      if (!directed)
        csr_edges[counter[e.to]++] = edge_type({e.to, e.frm, e.cost, e.id});
    }
  }

  OutgoingEdges operator[](
      int v) const {  // 获取v的所有出边的点,类似邻接表,需要 build 构建
    assert(prepared);
    return {this, indptr[v], indptr[v + 1]};
  }

  vc<int> deg_array() {
    if (vc_deg.empty()) calc_deg();
    return vc_deg;
  }

  pair<vc<int>, vc<int>> deg_array_inout() {
    if (vc_indeg.empty()) calc_deg_inout();
    return {vc_indeg, vc_outdeg};
  }

  int deg(int v) {
    if (vc_deg.empty()) calc_deg();
    return vc_deg[v];
  }

  int in_deg(int v) {
    if (vc_indeg.empty()) calc_deg_inout();
    return vc_indeg[v];
  }

  int out_deg(int v) {
    if (vc_outdeg.empty()) calc_deg_inout();
    return vc_outdeg[v];
  }

  void debug() {
    OUT("Graph");
    if (!prepared) {
      OUT("frm to cost id");
      for (auto &&e : edges) OUT(e.frm, e.to, e.cost, e.id);
    } else {
      OUT("indptr", indptr);
      OUT("frm to cost id");
      FOR(v, N) for (auto &&e : (*this)[v]) OUT(e.frm, e.to, e.cost, e.id);
    }
  }

  // G[V[i]] = G[i] 重新排列 ex s.t. {0, 1, 2, 3, 4} -> v{2, 4, 3, 1, 0}
  Graph<T, directed> rearrange(vc<int> V) {
    int n = len(V);
    map<int, int> MP;
    FOR(i, n) MP[V[i]] = i;
    Graph<T, directed> G(n);
    for (auto &&e : edges) {
      if (MP.count(e.frm) && MP.count(e.to)) {
        G.add(MP[e.frm], MP[e.to], e.cost);
      }
    }
    G.build();
    return G;
  }

 private:
  void calc_deg() {
    assert(vc_deg.empty());
    vc_deg.resize(N);
    for (auto &&e : edges) vc_deg[e.frm]++, vc_deg[e.to]++;
  }

  void calc_deg_inout() {
    assert(vc_indeg.empty());
    vc_indeg.resize(N);
    vc_outdeg.resize(N);
    for (auto &&e : edges) {
      vc_indeg[e.to]++, vc_outdeg[e.frm]++;
    }
  }
};

// {G, LR}
// 应该是一个合法括号序列
// 以regular bracket sequence为图表。还创建表示每个顶点范围的阵列LR。
// 也制作表示整体的根节点,N/2+1顶点。
// ()() → [0,4), [0,2), [2,4)
// G 可以从大括号向小括号连边
// regular bracket sequence以外来输入的时候,前后补充 () 就能使用。
std::pair<Graph<int, 1>, vc<std::pair<int, int>>> bracket_graph(
    std::string &S) {
  int N = len(S) / 2;
  Graph<int, 1> G(N + 1);
  vc<pair<int, int>> LR(N + 1);
  int now = 0;
  int nxt = 1;
  LR[0] = {0, len(S)};
  vc<int> par(N + 1, -1);
  FOR(i, len(S)) {
    assert(S[i] == '(' || S[i] == ')');
    if (S[i] == '(') {
      G.add(now, nxt);
      par[nxt] = now;
      LR[nxt].fi = i;
      now = nxt;
      nxt++;
    }
    if (S[i] == ')') {
      LR[now].se = i + 1;
      now = par[now];
    }
  }
  assert(now == 0);
  G.build();
  return {G, LR};
}

// HLD euler tour
// 非树也有 dfs 序和父亲
template <typename GT>
struct Tree {
  using Graph_type = GT;
  GT *G_ptr;
  using WT = typename GT::cost_type;
  int N;
  vector<int> LID, RID, head, V, parent, VtoE;
  vc<int> depth;
  vc<WT> depth_weighted;

  Tree() {}
  Tree(GT &G, int r = 0, bool hld = 1) { build(G, r, hld); }

  void build(GT &G, int r = 0, bool hld = 1) {
    G_ptr = &G;
    N = G.N;
    LID.assign(N, -1), RID.assign(N, -1), head.assign(N, r);
    V.assign(N, -1), parent.assign(N, -1), VtoE.assign(N, -1);
    depth.assign(N, -1), depth_weighted.assign(N, 0);
    assert(G.is_prepared());
    int t1 = 0;
    dfs_sz(r, -1, hld);
    dfs_hld(r, t1);
  }

  void dfs_sz(int v, int p, bool hld) {
    auto &sz = RID;
    parent[v] = p;
    depth[v] = (p == -1 ? 0 : depth[p] + 1);
    sz[v] = 1;
    int l = G_ptr->indptr[v], r = G_ptr->indptr[v + 1];
    auto &csr = G_ptr->csr_edges;

    for (int i = r - 2; i >= l; --i) {
      if (hld && depth[csr[i + 1].to] == -1) swap(csr[i], csr[i + 1]);
    }
    int hld_sz = 0;
    for (int i = l; i < r; ++i) {
      auto e = csr[i];
      if (depth[e.to] != -1) continue;
      depth_weighted[e.to] = depth_weighted[v] + e.cost;
      VtoE[e.to] = e.id;
      dfs_sz(e.to, v, hld);
      sz[v] += sz[e.to];
      if (hld && chmax(hld_sz, sz[e.to]) && l < i) {
        swap(csr[l], csr[i]);
      }
    }
  }

  void dfs_hld(int v, int &times) {
    LID[v] = times++;
    RID[v] += LID[v];
    V[LID[v]] = v;
    bool heavy = true;
    for (auto &&e : (*G_ptr)[v]) {
      if (depth[e.to] <= depth[v]) continue;
      head[e.to] = (heavy ? head[v] : e.to);
      heavy = false;
      dfs_hld(e.to, times);
    }
  }

  vc<int> heavy_path_at(int v) {
    vc<int> P = {v};
    while (1) {
      int a = P.back();
      for (auto &&e : (*G_ptr)[a]) {
        if (e.to != parent[a] && head[e.to] == v) {
          P.eb(e.to);
          break;
        }
      }
      if (P.back() == a) break;
    }
    return P;
  }

  int e_to_v(int eid) {
    auto e = (*G_ptr).edges[eid];
    return (parent[e.frm] == e.to ? e.frm : e.to);
  }
  int v_to_e(int v) { return VtoE[v]; }

  int ELID(int v) { return 2 * LID[v] - depth[v]; }
  int ERID(int v) { return 2 * RID[v] - depth[v] - 1; }

  /* k: 0-indexed */
  int LA(int v, int k) {  // k 个祖先
    assert(k <= depth[v]);
    while (1) {
      int u = head[v];
      if (LID[v] - k >= LID[u]) return V[LID[v] - k];
      k -= LID[v] - LID[u] + 1;
      v = parent[u];
    }
  }

  int LCA(int u, int v) {
    for (;; v = parent[head[v]]) {
      if (LID[u] > LID[v]) swap(u, v);
      if (head[u] == head[v]) return u;
    }
  }

  int lca(int u, int v) { return LCA(u, v); }
  int la(int u, int v) { return LA(u, v); }

  int subtree_size(int v, int root = -1) {
    if (root == -1) return RID[v] - LID[v];
    if (v == root) return N;
    int x = jump(v, root, 1);
    if (in_subtree(v, x)) return RID[v] - LID[v];
    return N - RID[x] + LID[x];
  }

  int dist(int a, int b) {
    int c = LCA(a, b);
    return depth[a] + depth[b] - 2 * depth[c];
  }

  WT dist(int a, int b, bool weighted) {
    assert(weighted);
    int c = LCA(a, b);
    return depth_weighted[a] + depth_weighted[b] - WT(2) * depth_weighted[c];
  }

  // a is in b
  bool in_subtree(int a, int b) { return LID[b] <= LID[a] && LID[a] < RID[b]; }

  int jump(int a, int b, ll k) {
    if (k == 1) {
      if (a == b) return -1;
      return (in_subtree(b, a) ? LA(b, depth[b] - depth[a] - 1) : parent[a]);
    }
    int c = LCA(a, b);
    int d_ac = depth[a] - depth[c];
    int d_bc = depth[b] - depth[c];
    if (k > d_ac + d_bc) return -1;
    if (k <= d_ac) return LA(a, k);
    return LA(b, d_ac + d_bc - k);
  }

  vc<int> collect_child(int v) {
    vc<int> res;
    for (auto &&e : (*G_ptr)[v])
      if (e.to != parent[v]) res.eb(e.to);
    return res;
  }

  // [始点, 终点] 的闭区间路径
  vc<pair<int, int>> get_path_decomposition(int u, int v, bool edge) {
    vc<pair<int, int>> up, down;
    while (1) {
      if (head[u] == head[v]) break;
      if (LID[u] < LID[v]) {
        down.eb(LID[head[v]], LID[v]);
        v = parent[head[v]];
      } else {
        up.eb(LID[u], LID[head[u]]);
        u = parent[head[u]];
      }
    }
    if (LID[u] < LID[v]) down.eb(LID[u] + edge, LID[v]);
    elif (LID[v] + edge <= LID[u]) up.eb(LID[u], LID[v] + edge);
    reverse(all(down));
    up.insert(up.end(), all(down));
    return up;
  }

  vc<int> restore_path(int u, int v) {
    vc<int> P;
    for (auto &&[a, b] : get_path_decomposition(u, v, 0)) {
      if (a <= b) {
        FOR(i, a, b + 1) P.eb(V[i]);
      } else {
        FOR_R(i, b, a + 1) P.eb(V[i]);
      }
    }
    return P;
  }
};

int main() {
  // freopen("in.txt", "r", stdin);
  // freopen("out.txt", "w", stdout);
  close_sync();
  INT(N, Q);
  STR(S);
  auto [G, LR] = bracket_graph(S);

  vc<int> idx(N);
  FOR(i, len(LR)) idx[LR[i].fi] = idx[LR[i].se - 1] = i;

  Tree tree(G);

  FOR(Q) {
    LL(a, b);
    a--;
    b--;

    int tl = idx[a], tr = idx[b];
    auto p = tree.lca(tl, tr);
    if (!p)
      OUT(-1);
    else
      OUT(LR[p].fi + 1, LR[p].se);
  }
}
0