結果

問題 No.1482 Swap Many Permutations
ユーザー tokusakuraitokusakurai
提出日時 2023-07-13 23:35:57
言語 C++17
(gcc 12.3.0 + boost 1.83.0)
結果
AC  
実行時間 635 ms / 2,000 ms
コード長 18,537 bytes
コンパイル時間 3,166 ms
コンパイル使用メモリ 231,000 KB
実行使用メモリ 13,400 KB
最終ジャッジ日時 2024-09-15 09:09:38
合計ジャッジ時間 14,984 ms
ジャッジサーバーID
(参考情報)
judge3 / judge6
このコードへのチャレンジ
(要ログイン)

テストケース

テストケース表示
入力 結果 実行時間
実行使用メモリ
testcase_00 AC 2 ms
5,248 KB
testcase_01 AC 2 ms
5,376 KB
testcase_02 AC 2 ms
5,376 KB
testcase_03 AC 2 ms
5,376 KB
testcase_04 AC 2 ms
5,376 KB
testcase_05 AC 2 ms
5,376 KB
testcase_06 AC 2 ms
5,376 KB
testcase_07 AC 2 ms
5,376 KB
testcase_08 AC 2 ms
5,376 KB
testcase_09 AC 2 ms
5,376 KB
testcase_10 AC 3 ms
5,376 KB
testcase_11 AC 2 ms
5,376 KB
testcase_12 AC 128 ms
8,044 KB
testcase_13 AC 88 ms
7,992 KB
testcase_14 AC 224 ms
12,960 KB
testcase_15 AC 209 ms
12,044 KB
testcase_16 AC 57 ms
5,432 KB
testcase_17 AC 222 ms
11,820 KB
testcase_18 AC 50 ms
5,760 KB
testcase_19 AC 152 ms
7,704 KB
testcase_20 AC 210 ms
12,200 KB
testcase_21 AC 349 ms
12,596 KB
testcase_22 AC 370 ms
13,388 KB
testcase_23 AC 417 ms
13,204 KB
testcase_24 AC 300 ms
13,268 KB
testcase_25 AC 324 ms
13,400 KB
testcase_26 AC 372 ms
13,264 KB
testcase_27 AC 635 ms
13,264 KB
testcase_28 AC 297 ms
13,284 KB
testcase_29 AC 254 ms
13,368 KB
testcase_30 AC 470 ms
13,268 KB
testcase_31 AC 253 ms
13,264 KB
testcase_32 AC 372 ms
13,260 KB
testcase_33 AC 635 ms
13,392 KB
testcase_34 AC 300 ms
13,272 KB
testcase_35 AC 254 ms
13,268 KB
testcase_36 AC 325 ms
13,272 KB
testcase_37 AC 20 ms
5,376 KB
testcase_38 AC 146 ms
5,376 KB
testcase_39 AC 37 ms
5,376 KB
testcase_40 AC 28 ms
5,376 KB
testcase_41 AC 221 ms
5,376 KB
testcase_42 AC 81 ms
8,280 KB
testcase_43 AC 81 ms
8,320 KB
testcase_44 AC 82 ms
8,248 KB
testcase_45 AC 87 ms
8,680 KB
testcase_46 AC 147 ms
11,732 KB
権限があれば一括ダウンロードができます

ソースコード

diff #

#include <bits/stdc++.h>
using namespace std;
#define rep(i, n) for (int i = 0; i < (n); i++)
#define per(i, n) for (int i = (n)-1; i >= 0; i--)
#define rep2(i, l, r) for (int i = (l); i < (r); i++)
#define per2(i, l, r) for (int i = (r)-1; i >= (l); i--)
#define each(e, v) for (auto &e : v)
#define MM << " " <<
#define pb push_back
#define eb emplace_back
#define all(x) begin(x), end(x)
#define rall(x) rbegin(x), rend(x)
#define sz(x) (int)x.size()
using ll = long long;
using pii = pair<int, int>;
using pil = pair<int, ll>;
using pli = pair<ll, int>;
using pll = pair<ll, ll>;

template <typename T>
using minheap = priority_queue<T, vector<T>, greater<T>>;

template <typename T>
using maxheap = priority_queue<T>;

template <typename T>
bool chmax(T &x, const T &y) {
    return (x < y) ? (x = y, true) : false;
}

template <typename T>
bool chmin(T &x, const T &y) {
    return (x > y) ? (x = y, true) : false;
}

template <typename T>
int flg(T x, int i) {
    return (x >> i) & 1;
}

int pct(int x) { return __builtin_popcount(x); }
int pct(ll x) { return __builtin_popcountll(x); }
int topbit(int x) { return (x == 0 ? -1 : 31 - __builtin_clz(x)); }
int topbit(ll x) { return (x == 0 ? -1 : 63 - __builtin_clzll(x)); }
int botbit(int x) { return (x == 0 ? -1 : __builtin_ctz(x)); }
int botbit(ll x) { return (x == 0 ? -1 : __builtin_ctzll(x)); }

template <typename T>
void print(const vector<T> &v, T x = 0) {
    int n = v.size();
    for (int i = 0; i < n; i++) cout << v[i] + x << (i == n - 1 ? '\n' : ' ');
    if (v.empty()) cout << '\n';
}

template <typename T>
void printn(const vector<T> &v, T x = 0) {
    int n = v.size();
    for (int i = 0; i < n; i++) cout << v[i] + x << '\n';
}

template <typename T>
int lb(const vector<T> &v, T x) {
    return lower_bound(begin(v), end(v), x) - begin(v);
}

template <typename T>
int ub(const vector<T> &v, T x) {
    return upper_bound(begin(v), end(v), x) - begin(v);
}

template <typename T>
void rearrange(vector<T> &v) {
    sort(begin(v), end(v));
    v.erase(unique(begin(v), end(v)), end(v));
}

template <typename T>
vector<int> id_sort(const vector<T> &v, bool greater = false) {
    int n = v.size();
    vector<int> ret(n);
    iota(begin(ret), end(ret), 0);
    sort(begin(ret), end(ret), [&](int i, int j) { return greater ? v[i] > v[j] : v[i] < v[j]; });
    return ret;
}

template <typename T>
void reorder(vector<T> &a, const vector<int> &ord) {
    int n = a.size();
    vector<T> b(n);
    for (int i = 0; i < n; i++) b[i] = a[ord[i]];
    swap(a, b);
}

template <typename T>
T floor(T x, T y) {
    assert(y != 0);
    if (y < 0) x = -x, y = -y;
    return (x >= 0 ? x / y : (x - y + 1) / y);
}

template <typename T>
T ceil(T x, T y) {
    assert(y != 0);
    if (y < 0) x = -x, y = -y;
    return (x >= 0 ? (x + y - 1) / y : x / y);
}

template <typename S, typename T>
pair<S, T> operator+(const pair<S, T> &p, const pair<S, T> &q) {
    return make_pair(p.first + q.first, p.second + q.second);
}

template <typename S, typename T>
pair<S, T> operator-(const pair<S, T> &p, const pair<S, T> &q) {
    return make_pair(p.first - q.first, p.second - q.second);
}

template <typename S, typename T>
istream &operator>>(istream &is, pair<S, T> &p) {
    S a;
    T b;
    is >> a >> b;
    p = make_pair(a, b);
    return is;
}

template <typename S, typename T>
ostream &operator<<(ostream &os, const pair<S, T> &p) {
    return os << p.first << ' ' << p.second;
}

struct io_setup {
    io_setup() {
        ios_base::sync_with_stdio(false);
        cin.tie(NULL);
        cout << fixed << setprecision(15);
    }
} io_setup;

constexpr int inf = (1 << 30) - 1;
constexpr ll INF = (1LL << 60) - 1;
// constexpr int MOD = 1000000007;
constexpr int MOD = 998244353;

template <int mod>
struct Mod_Int {
    int x;

    Mod_Int() : x(0) {}

    Mod_Int(long long y) : x(y >= 0 ? y % mod : (mod - (-y) % mod) % mod) {}

    static int get_mod() { return mod; }

    Mod_Int &operator+=(const Mod_Int &p) {
        if ((x += p.x) >= mod) x -= mod;
        return *this;
    }

    Mod_Int &operator-=(const Mod_Int &p) {
        if ((x += mod - p.x) >= mod) x -= mod;
        return *this;
    }

    Mod_Int &operator*=(const Mod_Int &p) {
        x = (int)(1LL * x * p.x % mod);
        return *this;
    }

    Mod_Int &operator/=(const Mod_Int &p) {
        *this *= p.inverse();
        return *this;
    }

    Mod_Int &operator++() { return *this += Mod_Int(1); }

    Mod_Int operator++(int) {
        Mod_Int tmp = *this;
        ++*this;
        return tmp;
    }

    Mod_Int &operator--() { return *this -= Mod_Int(1); }

    Mod_Int operator--(int) {
        Mod_Int tmp = *this;
        --*this;
        return tmp;
    }

    Mod_Int operator-() const { return Mod_Int(-x); }

    Mod_Int operator+(const Mod_Int &p) const { return Mod_Int(*this) += p; }

    Mod_Int operator-(const Mod_Int &p) const { return Mod_Int(*this) -= p; }

    Mod_Int operator*(const Mod_Int &p) const { return Mod_Int(*this) *= p; }

    Mod_Int operator/(const Mod_Int &p) const { return Mod_Int(*this) /= p; }

    bool operator==(const Mod_Int &p) const { return x == p.x; }

    bool operator!=(const Mod_Int &p) const { return x != p.x; }

    Mod_Int inverse() const {
        assert(*this != Mod_Int(0));
        return pow(mod - 2);
    }

    Mod_Int pow(long long k) const {
        Mod_Int now = *this, ret = 1;
        for (; k > 0; k >>= 1, now *= now) {
            if (k & 1) ret *= now;
        }
        return ret;
    }

    friend ostream &operator<<(ostream &os, const Mod_Int &p) { return os << p.x; }

    friend istream &operator>>(istream &is, Mod_Int &p) {
        long long a;
        is >> a;
        p = Mod_Int<mod>(a);
        return is;
    }
};

using mint = Mod_Int<MOD>;

template <typename T>
struct Combination {
    static vector<T> _fac, _ifac;

    Combination() {}

    static void init(int n) {
        _fac.resize(n + 1), _ifac.resize(n + 1);
        _fac[0] = 1;
        for (int i = 1; i <= n; i++) _fac[i] = _fac[i - 1] * i;
        _ifac[n] = _fac[n].inverse();
        for (int i = n; i >= 1; i--) _ifac[i - 1] = _ifac[i] * i;
    }

    static T fac(int k) { return _fac[k]; }

    static T ifac(int k) { return _ifac[k]; }

    static T inv(int k) { return fac(k - 1) * ifac(k); }

    static T P(int n, int k) {
        if (k < 0 || n < k) return 0;
        return fac(n) * ifac(n - k);
    }

    static T C(int n, int k) {
        if (k < 0 || n < k) return 0;
        return fac(n) * ifac(n - k) * ifac(k);
    }

    // n 個の区別できる箱に、k 個の区別できない玉を入れる場合の数
    static T H(int n, int k) {
        if (n < 0 || k < 0) return 0;
        return k == 0 ? 1 : C(n + k - 1, k);
    }

    // n 個の区別できる玉を、k 個の区別しない箱に、各箱に 1 個以上玉が入るように入れる場合の数
    static T second_stirling_number(int n, int k) {
        T ret = 0;
        for (int i = 0; i <= k; i++) {
            T tmp = C(k, i) * T(i).pow(n);
            ret += ((k - i) & 1) ? -tmp : tmp;
        }
        return ret * ifac(k);
    }

    // n 個の区別できる玉を、k 個の区別しない箱に入れる場合の数
    static T bell_number(int n, int k) {
        if (n == 0) return 1;
        k = min(k, n);
        vector<T> pref(k + 1);
        pref[0] = 1;
        for (int i = 1; i <= k; i++) {
            if (i & 1) {
                pref[i] = pref[i - 1] - ifac(i);
            } else {
                pref[i] = pref[i - 1] + ifac(i);
            }
        }
        T ret = 0;
        for (int i = 1; i <= k; i++) ret += T(i).pow(n) * ifac(i) * pref[k - i];
        return ret;
    }
};

template <typename T>
vector<T> Combination<T>::_fac = vector<T>();

template <typename T>
vector<T> Combination<T>::_ifac = vector<T>();

using comb = Combination<mint>;

template <typename T>
struct Number_Theoretic_Transform {
    static int max_base;
    static T root;
    static vector<T> r, ir;

    Number_Theoretic_Transform() {}

    static void init() {
        if (!r.empty()) return;
        int mod = T::get_mod();
        int tmp = mod - 1;
        root = 2;
        while (root.pow(tmp >> 1) == 1) root++;
        max_base = 0;
        while (tmp % 2 == 0) tmp >>= 1, max_base++;
        r.resize(max_base), ir.resize(max_base);
        for (int i = 0; i < max_base; i++) {
            r[i] = -root.pow((mod - 1) >> (i + 2)); // r[i]  := 1 の 2^(i+2) 乗根
            ir[i] = r[i].inverse();                 // ir[i] := 1/r[i]
        }
    }

    static void ntt(vector<T> &a) {
        init();
        int n = a.size();
        assert((n & (n - 1)) == 0);
        assert(n <= (1 << max_base));
        for (int k = n; k >>= 1;) {
            T w = 1;
            for (int s = 0, t = 0; s < n; s += 2 * k) {
                for (int i = s, j = s + k; i < s + k; i++, j++) {
                    T x = a[i], y = w * a[j];
                    a[i] = x + y, a[j] = x - y;
                }
                w *= r[__builtin_ctz(++t)];
            }
        }
    }

    static void intt(vector<T> &a) {
        init();
        int n = a.size();
        assert((n & (n - 1)) == 0);
        assert(n <= (1 << max_base));
        for (int k = 1; k < n; k <<= 1) {
            T w = 1;
            for (int s = 0, t = 0; s < n; s += 2 * k) {
                for (int i = s, j = s + k; i < s + k; i++, j++) {
                    T x = a[i], y = a[j];
                    a[i] = x + y, a[j] = w * (x - y);
                }
                w *= ir[__builtin_ctz(++t)];
            }
        }
        T inv = T(n).inverse();
        for (auto &e : a) e *= inv;
    }

    static vector<T> convolve(vector<T> a, vector<T> b) {
        if (a.empty() || b.empty()) return {};
        if (min(a.size(), b.size()) < 40) {
            int n = a.size(), m = b.size();
            vector<T> c(n + m - 1, 0);
            for (int i = 0; i < n; i++) {
                for (int j = 0; j < m; j++) c[i + j] += a[i] * b[j];
            }
            return c;
        }
        int k = (int)a.size() + (int)b.size() - 1, n = 1;
        while (n < k) n <<= 1;
        a.resize(n, 0), b.resize(n, 0);
        ntt(a), ntt(b);
        for (int i = 0; i < n; i++) a[i] *= b[i];
        intt(a), a.resize(k);
        return a;
    }
};

template <typename T>
int Number_Theoretic_Transform<T>::max_base = 0;

template <typename T>
T Number_Theoretic_Transform<T>::root = T();

template <typename T>
vector<T> Number_Theoretic_Transform<T>::r = vector<T>();

template <typename T>
vector<T> Number_Theoretic_Transform<T>::ir = vector<T>();

using NTT = Number_Theoretic_Transform<mint>;

template <typename T>
struct Binary_Indexed_Tree {
    vector<T> bit;
    const int n;

    Binary_Indexed_Tree(const vector<T> &v) : n((int)v.size()) {
        bit.resize(n + 1);
        copy(begin(v), end(v), begin(bit) + 1);
        build();
    }

    Binary_Indexed_Tree(int n, T x = 0) : Binary_Indexed_Tree(vector<T>(n, x)) {}

    void set(int i, const T &x) { bit[i + 1] = x; }

    void build() {
        for (int a = 2; a <= n; a <<= 1) {
            for (int b = a; b <= n; b += a) bit[b] += bit[b - a / 2];
        }
    }

    void add(int i, const T &x) {
        for (i++; i <= n; i += (i & -i)) bit[i] += x;
    }

    void change(int i, const T &x) { add(i, x - query(i, i + 1)); }

    T sum(int i) const {
        i = min(i, n);
        if (i <= 0) return 0;
        T ret = 0;
        for (; i > 0; i -= (i & -i)) ret += bit[i];
        return ret;
    }

    T query(int l, int r) const {
        l = max(l, 0), r = min(r, n);
        if (l >= r) return 0;
        return sum(r) - sum(l);
    }

    T operator[](int i) const { return query(i, i + 1); }

    // v[0]+...+v[r] >= x を満たす最小の r (なければ n)
    int lower_bound(T x) const {
        int ret = 0;
        for (int k = 31 - __builtin_clz(n); k >= 0; k--) {
            if (ret + (1 << k) <= n && bit[ret + (1 << k)] < x) x -= bit[ret += (1 << k)];
        }
        return ret;
    }

    // v[0]+...+v[r] > x を満たす最小の r (なければ n)
    int upper_bound(T x) const {
        int ret = 0;
        for (int k = 31 - __builtin_clz(n); k >= 0; k--) {
            if (ret + (1 << k) <= n && bit[ret + (1 << k)] <= x) x -= bit[ret += (1 << k)];
        }
        return ret;
    }
};

template <typename T>
long long inversion_number(const vector<T> &a) {
    int n = a.size();
    vector<int> v(n);
    iota(begin(v), end(v), 0);
    sort(begin(v), end(v), [&](int i, int j) {
        if (a[i] != a[j]) return a[i] < a[j];
        return i < j;
    });
    Binary_Indexed_Tree<int> bit(n, 0);
    long long ret = 0;
    for (int i = 0; i < n; i++) {
        ret += bit.query(v[i] + 1, n);
        bit.add(v[i], 1);
    }
    return ret;
}

// a を b に変換するのに必要な最小バブルソート回数
template <typename T>
long long inversion_number(const vector<T> &a, const vector<T> &b) {
    int n = a.size();
    assert(b.size() == n);
    vector<int> u(n), v(n);
    iota(begin(u), end(u), 0);
    sort(begin(u), end(u), [&](int i, int j) {
        if (a[i] != a[j]) return a[i] < a[j];
        return i < j;
    });
    iota(begin(v), end(v), 0);
    sort(begin(v), end(v), [&](int i, int j) {
        if (b[i] != b[j]) return b[i] < b[j];
        return i < j;
    });
    vector<int> w(n);
    for (int i = 0; i < n; i++) {
        if (a[u[i]] != b[v[i]]) return -1;
        w[v[i]] = u[i];
    }
    Binary_Indexed_Tree<int> bit(n, 0);
    long long ret = 0;
    for (int i = 0; i < n; i++) {
        ret += bit.query(w[i] + 1, n);
        bit.add(w[i], 1);
    }
    return ret;
}

struct Random_Number_Generator {
    mt19937_64 mt;

    Random_Number_Generator() : mt(chrono::steady_clock::now().time_since_epoch().count()) {}

    // [l,r) での一様乱数
    int64_t operator()(int64_t l, int64_t r) {
        uniform_int_distribution<int64_t> dist(l, r - 1);
        return dist(mt);
    }

    // [0,r) での一様乱数
    int64_t operator()(int64_t r) { return (*this)(0, r); }
} rng;

long long modpow(long long x, long long n, const int &m) {
    x %= m;
    long long ret = 1;
    for (; n > 0; n >>= 1, x *= x, x %= m) {
        if (n & 1) ret *= x, ret %= m;
    }
    return ret;
}

template <typename T>
T modinv(T a, const T &m) {
    T b = m, u = 1, v = 0;
    while (b > 0) {
        T t = a / b;
        swap(a -= t * b, b);
        swap(u -= t * v, v);
    }
    return u >= 0 ? u % m : (m - (-u) % m) % m;
}

// ax ≡ b (mod M) を満たす非負整数 x は (存在するなら) 等差数列となる。
// (最小解, 公差) を求める。存在しない場合は (-1, -1)
template <typename T>
pair<T, T> linear_equation(T a, T b, T m) {
    a %= m, b %= m;
    if (a < 0) a += m;
    if (b < 0) b += m;
    T g = gcd(a, m);
    if (b % g != 0) return {-1, -1};
    if (a == 0) return {0, 1};
    a /= g, b /= g, m /= g;
    return {b * modinv(a, m) % m, m};
}

// オイラーの φ 関数 (x と m が互いに素ならば、x^φ(m) ≡ 1 (mod m))
template <typename T>
T Euler_totient(T m) {
    T ret = m;
    for (T i = 2; i * i <= m; i++) {
        if (m % i == 0) ret /= i, ret *= i - 1;
        while (m % i == 0) m /= i;
    }
    if (m > 1) ret /= m, ret *= m - 1;
    return ret;
}

// x^k ≡ y (mod m) となる最小の非負整数 k (存在しなければ -1)
int modlog(int x, int y, int m, int max_ans = -1) {
    if (max_ans == -1) max_ans = m;
    long long g = 1;
    for (int i = m; i > 0; i >>= 1) g *= x, g %= m;
    g = gcd(g, m);
    int c = 0;
    long long t = 1;
    for (; t % g != 0; c++) {
        if (t == y) return c;
        t *= x, t %= m;
    }
    if (y % g != 0) return -1;
    t /= g, y /= g, m /= g;
    int n = 0;
    long long gs = 1;
    for (; n * n < max_ans; n++) gs *= x, gs %= m;
    unordered_map<int, int> mp;
    long long e = y;
    for (int i = 0; i < n; mp[e] = ++i) e *= x, e %= m;
    e = t;
    for (int i = 0; i < n; i++) {
        e *= gs, e %= m;
        if (mp.count(e)) return c + n * (i + 1) - mp[e];
    }
    return -1;
}

// x^k ≡ 1 (mod m) となる最小の正整数 k (x と m は互いに素)
template <typename T>
T order(T x, const T &m) {
    T n = Euler_totient(m);
    vector<T> ds;
    for (T i = 1; i * i <= n; i++) {
        if (n % i == 0) ds.push_back(i), ds.push_back(n / i);
    }
    sort(begin(ds), end(ds));
    for (auto &e : ds) {
        if (modpow(x, e, m) == 1) return e;
    }
    return -1;
}

// 素数 p の原始根
template <typename T>
T primitive_root(const T &p) {
    vector<T> ds;
    for (T i = 1; i * i <= p - 1; i++) {
        if ((p - 1) % i == 0) ds.push_back(i), ds.push_back((p - 1) / i);
    }
    sort(begin(ds), end(ds));
    while (true) {
        T r = rng(1, p);
        for (auto &e : ds) {
            if (e == p - 1) return r;
            if (modpow(r, e, p) == 1) break;
        }
    }
}

void solve() {
    int N, M;
    cin >> N >> M;

    comb::init(N);

    vector<int> b(N), c(N);
    rep(i, N) cin >> b[i] >> c[i];

    vector<int> sgn(M);
    rep2(i, 2, M) {
        int t = order(i, M);
        int c = (M - 1) / t + 1;
        sgn[i] = (M - c) & 1;
    }

    vector<mint> ans(N + 1, 0);
    ans[1] = 1;
    if (b[0] != b[1] || c[0] != c[1]) ans[2] = M * (M - 1);

    int X = 0, Y = 0;
    if (M == 2) {
        X = 1, Y = 1;
    } else {
        rep2(i, 1, M) {
            (sgn[i] ? X : Y) += M; //
        }
    }

    // cout << X MM Y << '\n';

    vector<vector<mint>> x(2, vector<mint>(N + 1, 0)), y(2, vector<mint>(N + 1, 0));
    {
        mint t = 1;
        rep(i, N + 1) {
            x[i & 1][i] += t;
            t *= X - i;
            t /= i + 1;
        }
    }
    {
        mint t = 1;
        rep(i, N + 1) {
            y[i & 1][i] += t;
            t *= Y - i;
            t /= i + 1;
        }
    }

    vector<vector<mint>> f(4);
    rep(i, 2) rep(j, 2) f[2 * i + j] = NTT::convolve(x[i], y[j]);

    int cnt = 0;
    rep(i, N) {
        if (M != 2) {
            cnt ^= sgn[c[i]];
        } else {
            if (b[i] == 1) cnt ^= 1;
        }
        if (i >= 2) {
            if (cnt) {
                ans[i + 1] += f[2][i + 1] + f[3][i + 1];
            } else {
                ans[i + 1] += f[0][i + 1] + f[1][i + 1];
            }
            ans[i + 1] *= comb::fac(i + 1);
        }
    }

    rep2(i, 1, N + 1) cout << ans[i] << '\n';
}

int main() {
    int T = 1;
    // cin >> T;
    while (T--) solve();
}
0