結果
問題 | No.1989 Pairing Multiset |
ユーザー |
|
提出日時 | 2023-07-13 23:45:15 |
言語 | Rust (1.83.0 + proconio) |
結果 |
AC
|
実行時間 | 23 ms / 2,000 ms |
コード長 | 5,446 bytes |
コンパイル時間 | 16,729 ms |
コンパイル使用メモリ | 377,896 KB |
実行使用メモリ | 5,248 KB |
最終ジャッジ日時 | 2024-12-29 17:06:55 |
合計ジャッジ時間 | 14,198 ms |
ジャッジサーバーID (参考情報) |
judge1 / judge4 |
(要ログイン)
ファイルパターン | 結果 |
---|---|
sample | AC * 3 |
other | AC * 18 |
ソースコード
use std::io::Read;fn get_word() -> String {let stdin = std::io::stdin();let mut stdin=stdin.lock();let mut u8b: [u8; 1] = [0];loop {let mut buf: Vec<u8> = Vec::with_capacity(16);loop {let res = stdin.read(&mut u8b);if res.unwrap_or(0) == 0 || u8b[0] <= b' ' {break;} else {buf.push(u8b[0]);}}if buf.len() >= 1 {let ret = String::from_utf8(buf).unwrap();return ret;}}}fn get<T: std::str::FromStr>() -> T { get_word().parse().ok().unwrap() }/// Verified by https://atcoder.jp/contests/abc198/submissions/21774342mod mod_int {use std::ops::*;pub trait Mod: Copy { fn m() -> i64; }#[derive(Copy, Clone, Hash, PartialEq, Eq, PartialOrd, Ord)]pub struct ModInt<M> { pub x: i64, phantom: ::std::marker::PhantomData<M> }impl<M: Mod> ModInt<M> {// x >= 0pub fn new(x: i64) -> Self { ModInt::new_internal(x % M::m()) }fn new_internal(x: i64) -> Self {ModInt { x: x, phantom: ::std::marker::PhantomData }}pub fn pow(self, mut e: i64) -> Self {debug_assert!(e >= 0);let mut sum = ModInt::new_internal(1);let mut cur = self;while e > 0 {if e % 2 != 0 { sum *= cur; }cur *= cur;e /= 2;}sum}#[allow(dead_code)]pub fn inv(self) -> Self { self.pow(M::m() - 2) }}impl<M: Mod> Default for ModInt<M> {fn default() -> Self { Self::new_internal(0) }}impl<M: Mod, T: Into<ModInt<M>>> Add<T> for ModInt<M> {type Output = Self;fn add(self, other: T) -> Self {let other = other.into();let mut sum = self.x + other.x;if sum >= M::m() { sum -= M::m(); }ModInt::new_internal(sum)}}impl<M: Mod, T: Into<ModInt<M>>> Sub<T> for ModInt<M> {type Output = Self;fn sub(self, other: T) -> Self {let other = other.into();let mut sum = self.x - other.x;if sum < 0 { sum += M::m(); }ModInt::new_internal(sum)}}impl<M: Mod, T: Into<ModInt<M>>> Mul<T> for ModInt<M> {type Output = Self;fn mul(self, other: T) -> Self { ModInt::new(self.x * other.into().x % M::m()) }}impl<M: Mod, T: Into<ModInt<M>>> AddAssign<T> for ModInt<M> {fn add_assign(&mut self, other: T) { *self = *self + other; }}impl<M: Mod, T: Into<ModInt<M>>> SubAssign<T> for ModInt<M> {fn sub_assign(&mut self, other: T) { *self = *self - other; }}impl<M: Mod, T: Into<ModInt<M>>> MulAssign<T> for ModInt<M> {fn mul_assign(&mut self, other: T) { *self = *self * other; }}impl<M: Mod> Neg for ModInt<M> {type Output = Self;fn neg(self) -> Self { ModInt::new(0) - self }}impl<M> ::std::fmt::Display for ModInt<M> {fn fmt(&self, f: &mut ::std::fmt::Formatter) -> ::std::fmt::Result {self.x.fmt(f)}}impl<M: Mod> From<i64> for ModInt<M> {fn from(x: i64) -> Self { Self::new(x) }}} // mod mod_intmacro_rules! define_mod {($struct_name: ident, $modulo: expr) => {#[derive(Copy, Clone, PartialEq, Eq, PartialOrd, Ord, Hash)]struct $struct_name {}impl mod_int::Mod for $struct_name { fn m() -> i64 { $modulo } }}}const MOD: i64 = 998_244_353;define_mod!(P, MOD);type MInt = mod_int::ModInt<P>;// C(a, b)fn comb(a: i64, b: i64) -> MInt {if a < 0 {return MInt::new(0);}let b = std::cmp::min(b, a - b);if b < 0 {return MInt::new(0);}let mut num = MInt::new(1);let mut den = MInt::new(1);for i in 1..b + 1 {num *= a + 1 - i;den *= i;}num * den.inv()}// \sum_{l <= i <= r} coef[j] i^j C(i, a)fn comb_poly_sum(rng: std::ops::RangeInclusive<i64>, a: i64, coef: &[MInt]) -> MInt {// Stirling numbers of second kind, with S2(n, k) negative for (n + k) % 2 != 0// Complexity: O(n^2)// First terms are:// 1// -1 1// 1 -3 1// -1 7 -6 1let n = coef.len();let mut stir = vec![vec![MInt::new(0); n + 1]; n + 1];stir[0][0] += 1;for i in 1..n + 1 {for j in 1..i + 1 {let mut me = stir[i - 1][j - 1];me -= stir[i - 1][j] * j as i64;stir[i][j] = me;}}let mut trans = vec![MInt::new(0); n];for i in 0..n {for j in 0..i + 1 {trans[j] += stir[i + 1][j + 1] * coef[i];}}let mut tot = MInt::new(0);let (l, r) = rng.into_inner();let mut cur = MInt::new(1); // (a+1)...(a+i)for i in 0..n {tot += trans[i] * (comb(r + 1 + i as i64, a + i as i64 + 1) - comb(l + i as i64, a + i as i64 + 1)) * cur;cur *= a + i as i64 + 1;}tot}// https://yukicoder.me/problems/no/1989 (3)// 答えは N \sum_{0 <= i <= M} iC(2N-1 + M-i, 2N-1) である。// N \sum_{2N-1 <= i <= 2N-1 +M} (2N-1+M-i) C(i, 2N-1) を計算すれば良い。fn main() {let n: i64 = get();let m: i64 = get();println!("{}", comb_poly_sum(2 * n - 1..=2 * n - 1 + m, 2 * n - 1, &[MInt::new(2 * n - 1 + m), -MInt::new(1)]) * n);}