結果

問題 No.2376 障害物競プロ
ユーザー hitonanodehitonanode
提出日時 2023-07-14 09:44:01
言語 C++23
(gcc 13.3.0 + boost 1.87.0)
結果
AC  
実行時間 599 ms / 4,000 ms
コード長 16,176 bytes
コンパイル時間 2,465 ms
コンパイル使用メモリ 196,040 KB
実行使用メモリ 7,160 KB
最終ジャッジ日時 2024-09-15 18:23:16
合計ジャッジ時間 68,301 ms
ジャッジサーバーID
(参考情報)
judge2 / judge6
このコードへのチャレンジ
(要ログイン)

テストケース

テストケース表示
入力 結果 実行時間
実行使用メモリ
testcase_00 AC 2 ms
6,812 KB
testcase_01 AC 2 ms
6,944 KB
testcase_02 AC 2 ms
6,944 KB
testcase_03 AC 2 ms
6,940 KB
testcase_04 AC 255 ms
6,940 KB
testcase_05 AC 358 ms
6,940 KB
testcase_06 AC 159 ms
6,944 KB
testcase_07 AC 546 ms
6,944 KB
testcase_08 AC 537 ms
6,944 KB
testcase_09 AC 531 ms
6,940 KB
testcase_10 AC 529 ms
6,940 KB
testcase_11 AC 448 ms
6,944 KB
testcase_12 AC 418 ms
6,940 KB
testcase_13 AC 514 ms
6,940 KB
testcase_14 AC 532 ms
6,944 KB
testcase_15 AC 481 ms
6,940 KB
testcase_16 AC 520 ms
6,944 KB
testcase_17 AC 422 ms
6,944 KB
testcase_18 AC 405 ms
6,940 KB
testcase_19 AC 493 ms
7,032 KB
testcase_20 AC 511 ms
7,160 KB
testcase_21 AC 512 ms
7,160 KB
testcase_22 AC 403 ms
6,940 KB
testcase_23 AC 308 ms
6,940 KB
testcase_24 AC 276 ms
6,944 KB
testcase_25 AC 128 ms
6,944 KB
testcase_26 AC 295 ms
6,940 KB
testcase_27 AC 250 ms
6,940 KB
testcase_28 AC 175 ms
6,940 KB
testcase_29 AC 129 ms
6,940 KB
testcase_30 AC 212 ms
6,940 KB
testcase_31 AC 167 ms
6,944 KB
testcase_32 AC 24 ms
6,944 KB
testcase_33 AC 84 ms
6,940 KB
testcase_34 AC 92 ms
6,940 KB
testcase_35 AC 53 ms
6,944 KB
testcase_36 AC 344 ms
6,940 KB
testcase_37 AC 351 ms
6,944 KB
testcase_38 AC 127 ms
6,944 KB
testcase_39 AC 436 ms
6,940 KB
testcase_40 AC 193 ms
6,940 KB
testcase_41 AC 118 ms
6,940 KB
testcase_42 AC 588 ms
6,940 KB
testcase_43 AC 599 ms
7,028 KB
権限があれば一括ダウンロードができます

ソースコード

diff #

#include <algorithm>
#include <array>
#include <bitset>
#include <cassert>
#include <chrono>
#include <cmath>
#include <complex>
#include <deque>
#include <forward_list>
#include <fstream>
#include <functional>
#include <iomanip>
#include <ios>
#include <iostream>
#include <limits>
#include <list>
#include <map>
#include <numeric>
#include <queue>
#include <random>
#include <set>
#include <sstream>
#include <stack>
#include <string>
#include <tuple>
#include <type_traits>
#include <unordered_map>
#include <unordered_set>
#include <utility>
#include <vector>
using namespace std;
using lint = long long;
using pint = pair<int, int>;
using plint = pair<lint, lint>;
struct fast_ios { fast_ios(){ cin.tie(nullptr), ios::sync_with_stdio(false), cout << fixed << setprecision(20); }; } fast_ios_;
#define ALL(x) (x).begin(), (x).end()
#define FOR(i, begin, end) for(int i=(begin),i##_end_=(end);i<i##_end_;i++)
#define IFOR(i, begin, end) for(int i=(end)-1,i##_begin_=(begin);i>=i##_begin_;i--)
#define REP(i, n) FOR(i,0,n)
#define IREP(i, n) IFOR(i,0,n)
template <typename T, typename V>
void ndarray(vector<T>& vec, const V& val, int len) { vec.assign(len, val); }
template <typename T, typename V, typename... Args> void ndarray(vector<T>& vec, const V& val, int len, Args... args) { vec.resize(len), for_each(begin(vec), end(vec), [&](T& v) { ndarray(v, val, args...); }); }
template <typename T> bool chmax(T &m, const T q) { return m < q ? (m = q, true) : false; }
template <typename T> bool chmin(T &m, const T q) { return m > q ? (m = q, true) : false; }
const std::vector<std::pair<int, int>> grid_dxs{{1, 0}, {-1, 0}, {0, 1}, {0, -1}};
int floor_lg(long long x) { return x <= 0 ? -1 : 63 - __builtin_clzll(x); }
template <class T1, class T2> T1 floor_div(T1 num, T2 den) { return (num > 0 ? num / den : -((-num + den - 1) / den)); }
template <class T1, class T2> std::pair<T1, T2> operator+(const std::pair<T1, T2> &l, const std::pair<T1, T2> &r) { return std::make_pair(l.first + r.first, l.second + r.second); }
template <class T1, class T2> std::pair<T1, T2> operator-(const std::pair<T1, T2> &l, const std::pair<T1, T2> &r) { return std::make_pair(l.first - r.first, l.second - r.second); }
template <class T> std::vector<T> sort_unique(std::vector<T> vec) { sort(vec.begin(), vec.end()), vec.erase(unique(vec.begin(), vec.end()), vec.end()); return vec; }
template <class T> int arglb(const std::vector<T> &v, const T &x) { return std::distance(v.begin(), std::lower_bound(v.begin(), v.end(), x)); }
template <class T> int argub(const std::vector<T> &v, const T &x) { return std::distance(v.begin(), std::upper_bound(v.begin(), v.end(), x)); }
template <class IStream, class T> IStream &operator>>(IStream &is, std::vector<T> &vec) { for (auto &v : vec) is >> v; return is; }

template <class OStream, class T> OStream &operator<<(OStream &os, const std::vector<T> &vec);
template <class OStream, class T, size_t sz> OStream &operator<<(OStream &os, const std::array<T, sz> &arr);
template <class OStream, class T, class TH> OStream &operator<<(OStream &os, const std::unordered_set<T, TH> &vec);
template <class OStream, class T, class U> OStream &operator<<(OStream &os, const pair<T, U> &pa);
template <class OStream, class T> OStream &operator<<(OStream &os, const std::deque<T> &vec);
template <class OStream, class T> OStream &operator<<(OStream &os, const std::set<T> &vec);
template <class OStream, class T> OStream &operator<<(OStream &os, const std::multiset<T> &vec);
template <class OStream, class T> OStream &operator<<(OStream &os, const std::unordered_multiset<T> &vec);
template <class OStream, class T, class U> OStream &operator<<(OStream &os, const std::pair<T, U> &pa);
template <class OStream, class TK, class TV> OStream &operator<<(OStream &os, const std::map<TK, TV> &mp);
template <class OStream, class TK, class TV, class TH> OStream &operator<<(OStream &os, const std::unordered_map<TK, TV, TH> &mp);
template <class OStream, class... T> OStream &operator<<(OStream &os, const std::tuple<T...> &tpl);

template <class OStream, class T> OStream &operator<<(OStream &os, const std::vector<T> &vec) { os << '['; for (auto v : vec) os << v << ','; os << ']'; return os; }
template <class OStream, class T, size_t sz> OStream &operator<<(OStream &os, const std::array<T, sz> &arr) { os << '['; for (auto v : arr) os << v << ','; os << ']'; return os; }
template <class... T> std::istream &operator>>(std::istream &is, std::tuple<T...> &tpl) { std::apply([&is](auto &&... args) { ((is >> args), ...);}, tpl); return is; }
template <class OStream, class... T> OStream &operator<<(OStream &os, const std::tuple<T...> &tpl) { os << '('; std::apply([&os](auto &&... args) { ((os << args << ','), ...);}, tpl); return os << ')'; }
template <class OStream, class T, class TH> OStream &operator<<(OStream &os, const std::unordered_set<T, TH> &vec) { os << '{'; for (auto v : vec) os << v << ','; os << '}'; return os; }
template <class OStream, class T> OStream &operator<<(OStream &os, const std::deque<T> &vec) { os << "deq["; for (auto v : vec) os << v << ','; os << ']'; return os; }
template <class OStream, class T> OStream &operator<<(OStream &os, const std::set<T> &vec) { os << '{'; for (auto v : vec) os << v << ','; os << '}'; return os; }
template <class OStream, class T> OStream &operator<<(OStream &os, const std::multiset<T> &vec) { os << '{'; for (auto v : vec) os << v << ','; os << '}'; return os; }
template <class OStream, class T> OStream &operator<<(OStream &os, const std::unordered_multiset<T> &vec) { os << '{'; for (auto v : vec) os << v << ','; os << '}'; return os; }
template <class OStream, class T, class U> OStream &operator<<(OStream &os, const std::pair<T, U> &pa) { return os << '(' << pa.first << ',' << pa.second << ')'; }
template <class OStream, class TK, class TV> OStream &operator<<(OStream &os, const std::map<TK, TV> &mp) { os << '{'; for (auto v : mp) os << v.first << "=>" << v.second << ','; os << '}'; return os; }
template <class OStream, class TK, class TV, class TH> OStream &operator<<(OStream &os, const std::unordered_map<TK, TV, TH> &mp) { os << '{'; for (auto v : mp) os << v.first << "=>" << v.second << ','; os << '}'; return os; }
#ifdef HITONANODE_LOCAL
const string COLOR_RESET = "\033[0m", BRIGHT_GREEN = "\033[1;32m", BRIGHT_RED = "\033[1;31m", BRIGHT_CYAN = "\033[1;36m", NORMAL_CROSSED = "\033[0;9;37m", RED_BACKGROUND = "\033[1;41m", NORMAL_FAINT = "\033[0;2m";
#define dbg(x) std::cerr << BRIGHT_CYAN << #x << COLOR_RESET << " = " << (x) << NORMAL_FAINT << " (L" << __LINE__ << ") " << __FILE__ << COLOR_RESET << std::endl
#define dbgif(cond, x) ((cond) ? std::cerr << BRIGHT_CYAN << #x << COLOR_RESET << " = " << (x) << NORMAL_FAINT << " (L" << __LINE__ << ") " << __FILE__ << COLOR_RESET << std::endl : std::cerr)
#else
#define dbg(x) ((void)0)
#define dbgif(cond, x) ((void)0)
#endif


template <typename T, int INVALID = -1>
struct shortest_path {
    static constexpr T INF = T(1e18);
    int V, E;
    bool single_positive_weight;
    T wmin, wmax;

    std::vector<std::pair<int, T>> tos;
    std::vector<int> head;
    std::vector<std::tuple<int, int, T>> edges;

    void build_() {
        if (int(tos.size()) == E and int(head.size()) == V + 1) return;
        tos.resize(E);
        head.assign(V + 1, 0);
        for (const auto &e : edges) ++head[std::get<0>(e) + 1];
        for (int i = 0; i < V; ++i) head[i + 1] += head[i];
        auto cur = head;
        for (const auto &e : edges) {
            tos[cur[std::get<0>(e)]++] = std::make_pair(std::get<1>(e), std::get<2>(e));
        }
    }

    shortest_path(int V = 0) : V(V), E(0), single_positive_weight(true), wmin(0), wmax(0) {}
    void add_edge(int s, int t, T w) {
        assert(0 <= s and s < V);
        assert(0 <= t and t < V);
        edges.emplace_back(s, t, w);
        ++E;
        if (w > 0 and wmax > 0 and wmax != w) single_positive_weight = false;
        wmin = std::min(wmin, w);
        wmax = std::max(wmax, w);
    }

    void add_bi_edge(int u, int v, T w) {
        add_edge(u, v, w);
        add_edge(v, u, w);
    }

    std::vector<T> dist;
    std::vector<int> prev;

    // Dijkstra algorithm
    // - Requirement: wmin >= 0
    // - Complexity: O(E log E)
    using Pque = std::priority_queue<std::pair<T, int>, std::vector<std::pair<T, int>>,
                                     std::greater<std::pair<T, int>>>;
    template <class Heap = Pque> void dijkstra(int s, int t = INVALID) {
        assert(0 <= s and s < V);
        build_();
        dist.assign(V, INF);
        prev.assign(V, INVALID);
        dist[s] = 0;
        Heap pq;
        pq.emplace(0, s);
        while (!pq.empty()) {
            T d;
            int v;
            std::tie(d, v) = pq.top();
            pq.pop();
            if (t == v) return;
            if (dist[v] < d) continue;
            for (int e = head[v]; e < head[v + 1]; ++e) {
                const auto &nx = tos[e];
                T dnx = d + nx.second;
                if (dist[nx.first] > dnx) {
                    dist[nx.first] = dnx, prev[nx.first] = v;
                    pq.emplace(dnx, nx.first);
                }
            }
        }
    }

    // Dijkstra algorithm
    // - Requirement: wmin >= 0
    // - Complexity: O(V^2 + E)
    void dijkstra_vquad(int s, int t = INVALID) {
        assert(0 <= s and s < V);
        build_();
        dist.assign(V, INF);
        prev.assign(V, INVALID);
        dist[s] = 0;
        std::vector<char> fixed(V, false);
        while (true) {
            int r = INVALID;
            T dr = INF;
            for (int i = 0; i < V; i++) {
                if (!fixed[i] and dist[i] < dr) r = i, dr = dist[i];
            }
            if (r == INVALID or r == t) break;
            fixed[r] = true;
            int nxt;
            T dx;
            for (int e = head[r]; e < head[r + 1]; ++e) {
                std::tie(nxt, dx) = tos[e];
                if (dist[nxt] > dist[r] + dx) dist[nxt] = dist[r] + dx, prev[nxt] = r;
            }
        }
    }

    // Warshall-Floyd algorithm
    // - Requirement: no negative loop
    // - Complexity: O(E + V^3)
    std::vector<std::vector<T>> floyd_warshall() {
        build_();
        std::vector<std::vector<T>> dist2d(V, std::vector<T>(V, INF));
        for (int i = 0; i < V; i++) {
            dist2d[i][i] = 0;
            for (const auto &e : edges) {
                int s = std::get<0>(e), t = std::get<1>(e);
                dist2d[s][t] = std::min(dist2d[s][t], std::get<2>(e));
            }
        }
        for (int k = 0; k < V; k++) {
            for (int i = 0; i < V; i++) {
                if (dist2d[i][k] == INF) continue;
                for (int j = 0; j < V; j++) {
                    if (dist2d[k][j] == INF) continue;
                    dist2d[i][j] = std::min(dist2d[i][j], dist2d[i][k] + dist2d[k][j]);
                }
            }
        }
        return dist2d;
    }
};


#include <algorithm>
#include <cassert>
#include <cmath>
#include <complex>
#include <iostream>
#include <tuple>
#include <utility>
#include <vector>

template <typename T_P> struct Point2d {
    static T_P EPS;
    static void set_eps(T_P e) { EPS = e; }
    T_P x, y;
    Point2d() : x(0), y(0) {}
    Point2d(T_P x, T_P y) : x(x), y(y) {}
    Point2d(const std::pair<T_P, T_P> &p) : x(p.first), y(p.second) {}
    Point2d(const std::complex<T_P> &p) : x(p.real()), y(p.imag()) {}
    std::complex<T_P> to_complex() const noexcept { return {x, y}; }
    Point2d operator+(const Point2d &p) const noexcept { return Point2d(x + p.x, y + p.y); }
    Point2d operator-(const Point2d &p) const noexcept { return Point2d(x - p.x, y - p.y); }
    Point2d operator*(const Point2d &p) const noexcept {
        static_assert(std::is_floating_point<T_P>::value == true);
        return Point2d(x * p.x - y * p.y, x * p.y + y * p.x);
    }
    Point2d operator*(T_P d) const noexcept { return Point2d(x * d, y * d); }
    Point2d operator/(T_P d) const noexcept {
        static_assert(std::is_floating_point<T_P>::value == true);
        return Point2d(x / d, y / d);
    }
    Point2d inv() const {
        static_assert(std::is_floating_point<T_P>::value == true);
        return conj() / norm2();
    }
    Point2d operator/(const Point2d &p) const { return (*this) * p.inv(); }
    bool operator<(const Point2d &r) const noexcept { return x != r.x ? x < r.x : y < r.y; }
    bool operator==(const Point2d &r) const noexcept { return x == r.x and y == r.y; }
    bool operator!=(const Point2d &r) const noexcept { return !((*this) == r); }
    T_P dot(Point2d p) const noexcept { return x * p.x + y * p.y; }
    T_P det(Point2d p) const noexcept { return x * p.y - y * p.x; }
    T_P absdet(Point2d p) const noexcept { return std::abs(det(p)); }
    T_P norm() const noexcept {
        static_assert(std::is_floating_point<T_P>::value == true);
        return std::sqrt(x * x + y * y);
    }
    T_P norm2() const noexcept { return x * x + y * y; }
    T_P arg() const noexcept { return std::atan2(y, x); }
    // rotate point/vector by rad
    Point2d rotate(T_P rad) const noexcept {
        static_assert(std::is_floating_point<T_P>::value == true);
        return Point2d(x * std::cos(rad) - y * std::sin(rad), x * std::sin(rad) + y * std::cos(rad));
    }
    Point2d normalized() const {
        static_assert(std::is_floating_point<T_P>::value == true);
        return (*this) / this->norm();
    }
    Point2d conj() const noexcept { return Point2d(x, -y); }

    template <class IStream> friend IStream &operator>>(IStream &is, Point2d &p) {
        T_P x, y;
        is >> x >> y;
        p = Point2d(x, y);
        return is;
    }
    template <class OStream> friend OStream &operator<<(OStream &os, const Point2d &p) {
        return os << '(' << p.x << ',' << p.y << ')';
    }
};
template <> double Point2d<double>::EPS = 1e-9;
template <> long double Point2d<long double>::EPS = 1e-12;
template <> long long Point2d<long long>::EPS = 0;


// Whether two segments s1t1 & s2t2 intersect or not (endpoints not included)
// Google Code Jam 2013 Round 3 - Rural Planning
// Google Code Jam 2021 Round 3 - Fence Design
template <typename T>
bool intersect_open_segments(Point2d<T> s1, Point2d<T> t1, Point2d<T> s2, Point2d<T> t2) {
    if (s1 == t1 or s2 == t2) return false; // Not segment but point
    int nbad = 0;
    for (int t = 0; t < 2; t++) {
        Point2d<T> v1 = t1 - s1, v2 = t2 - s2;
        T den = v2.det(v1);
        if (den == 0) {
            if (s1.det(v1) == s2.det(v1)) {
                auto L1 = s1.dot(v1), R1 = t1.dot(v1);
                auto L2 = s2.dot(v1), R2 = t2.dot(v1);
                if (L1 > R1) std::swap(L1, R1);
                if (L2 > R2) std::swap(L2, R2);
                if (L1 > L2) std::swap(L1, L2), std::swap(R1, R2);
                return R1 > L2;
            } else {
                return false;
            }
        } else {
            auto num = v2.det(s2 - s1);
            if ((0 < num and num < den) or (den < num and num < 0)) nbad++;
        }
        std::swap(s1, s2);
        std::swap(t1, t2);
    }
    return nbad == 2;
}

using Pt = Point2d<long long>;

int main() {
    int N, M;
    cin >> N >> M;

    vector<Pt> pts(N * 2);
    for (auto &v : pts) cin >> v;

    shortest_path<long long, -1> graph(N * 2);
    auto f = [&](int i, int d) { return i * 2 + d; };

    vector<bitset<300>> is_bad(N * 2);
    REP(s, N * 2) FOR(t, s + 1, N * 2) REP(bar, N) {
        int u = f(bar, 0), v = f(bar, 1);
        if (s == u or s == v or t == u or t == v) continue;
        if (intersect_open_segments(pts.at(s), pts.at(t), pts.at(u), pts.at(v))) {
            is_bad.at(s).set(t);
            is_bad.at(t).set(s);
            is_bad.at(u).set(v);
            is_bad.at(v).set(u);
        }
    }

    REP(i, N * 2) REP(j, N * 2) if (!is_bad.at(i).test(j)) graph.add_bi_edge(i, j, sqrt((pts.at(i) - pts.at(j)).norm2()) * 1e6);

    auto dists = graph.floyd_warshall();

    while (M--) {
        int i, d, j, e;
        cin >> i >> d >> j >> e;
        --i, --d, --j, --e;
        cout << dists.at(f(i, d)).at(f(j, e)) * 1e-6 << '\n';
    }
}
0