結果
問題 | No.2376 障害物競プロ |
ユーザー | hitonanode |
提出日時 | 2023-07-14 09:44:01 |
言語 | C++23 (gcc 13.3.0 + boost 1.87.0) |
結果 |
AC
|
実行時間 | 599 ms / 4,000 ms |
コード長 | 16,176 bytes |
コンパイル時間 | 2,465 ms |
コンパイル使用メモリ | 196,040 KB |
実行使用メモリ | 7,160 KB |
最終ジャッジ日時 | 2024-09-15 18:23:16 |
合計ジャッジ時間 | 68,301 ms |
ジャッジサーバーID (参考情報) |
judge2 / judge6 |
(要ログイン)
テストケース
テストケース表示入力 | 結果 | 実行時間 実行使用メモリ |
---|---|---|
testcase_00 | AC | 2 ms
6,812 KB |
testcase_01 | AC | 2 ms
6,944 KB |
testcase_02 | AC | 2 ms
6,944 KB |
testcase_03 | AC | 2 ms
6,940 KB |
testcase_04 | AC | 255 ms
6,940 KB |
testcase_05 | AC | 358 ms
6,940 KB |
testcase_06 | AC | 159 ms
6,944 KB |
testcase_07 | AC | 546 ms
6,944 KB |
testcase_08 | AC | 537 ms
6,944 KB |
testcase_09 | AC | 531 ms
6,940 KB |
testcase_10 | AC | 529 ms
6,940 KB |
testcase_11 | AC | 448 ms
6,944 KB |
testcase_12 | AC | 418 ms
6,940 KB |
testcase_13 | AC | 514 ms
6,940 KB |
testcase_14 | AC | 532 ms
6,944 KB |
testcase_15 | AC | 481 ms
6,940 KB |
testcase_16 | AC | 520 ms
6,944 KB |
testcase_17 | AC | 422 ms
6,944 KB |
testcase_18 | AC | 405 ms
6,940 KB |
testcase_19 | AC | 493 ms
7,032 KB |
testcase_20 | AC | 511 ms
7,160 KB |
testcase_21 | AC | 512 ms
7,160 KB |
testcase_22 | AC | 403 ms
6,940 KB |
testcase_23 | AC | 308 ms
6,940 KB |
testcase_24 | AC | 276 ms
6,944 KB |
testcase_25 | AC | 128 ms
6,944 KB |
testcase_26 | AC | 295 ms
6,940 KB |
testcase_27 | AC | 250 ms
6,940 KB |
testcase_28 | AC | 175 ms
6,940 KB |
testcase_29 | AC | 129 ms
6,940 KB |
testcase_30 | AC | 212 ms
6,940 KB |
testcase_31 | AC | 167 ms
6,944 KB |
testcase_32 | AC | 24 ms
6,944 KB |
testcase_33 | AC | 84 ms
6,940 KB |
testcase_34 | AC | 92 ms
6,940 KB |
testcase_35 | AC | 53 ms
6,944 KB |
testcase_36 | AC | 344 ms
6,940 KB |
testcase_37 | AC | 351 ms
6,944 KB |
testcase_38 | AC | 127 ms
6,944 KB |
testcase_39 | AC | 436 ms
6,940 KB |
testcase_40 | AC | 193 ms
6,940 KB |
testcase_41 | AC | 118 ms
6,940 KB |
testcase_42 | AC | 588 ms
6,940 KB |
testcase_43 | AC | 599 ms
7,028 KB |
ソースコード
#include <algorithm> #include <array> #include <bitset> #include <cassert> #include <chrono> #include <cmath> #include <complex> #include <deque> #include <forward_list> #include <fstream> #include <functional> #include <iomanip> #include <ios> #include <iostream> #include <limits> #include <list> #include <map> #include <numeric> #include <queue> #include <random> #include <set> #include <sstream> #include <stack> #include <string> #include <tuple> #include <type_traits> #include <unordered_map> #include <unordered_set> #include <utility> #include <vector> using namespace std; using lint = long long; using pint = pair<int, int>; using plint = pair<lint, lint>; struct fast_ios { fast_ios(){ cin.tie(nullptr), ios::sync_with_stdio(false), cout << fixed << setprecision(20); }; } fast_ios_; #define ALL(x) (x).begin(), (x).end() #define FOR(i, begin, end) for(int i=(begin),i##_end_=(end);i<i##_end_;i++) #define IFOR(i, begin, end) for(int i=(end)-1,i##_begin_=(begin);i>=i##_begin_;i--) #define REP(i, n) FOR(i,0,n) #define IREP(i, n) IFOR(i,0,n) template <typename T, typename V> void ndarray(vector<T>& vec, const V& val, int len) { vec.assign(len, val); } template <typename T, typename V, typename... Args> void ndarray(vector<T>& vec, const V& val, int len, Args... args) { vec.resize(len), for_each(begin(vec), end(vec), [&](T& v) { ndarray(v, val, args...); }); } template <typename T> bool chmax(T &m, const T q) { return m < q ? (m = q, true) : false; } template <typename T> bool chmin(T &m, const T q) { return m > q ? (m = q, true) : false; } const std::vector<std::pair<int, int>> grid_dxs{{1, 0}, {-1, 0}, {0, 1}, {0, -1}}; int floor_lg(long long x) { return x <= 0 ? -1 : 63 - __builtin_clzll(x); } template <class T1, class T2> T1 floor_div(T1 num, T2 den) { return (num > 0 ? num / den : -((-num + den - 1) / den)); } template <class T1, class T2> std::pair<T1, T2> operator+(const std::pair<T1, T2> &l, const std::pair<T1, T2> &r) { return std::make_pair(l.first + r.first, l.second + r.second); } template <class T1, class T2> std::pair<T1, T2> operator-(const std::pair<T1, T2> &l, const std::pair<T1, T2> &r) { return std::make_pair(l.first - r.first, l.second - r.second); } template <class T> std::vector<T> sort_unique(std::vector<T> vec) { sort(vec.begin(), vec.end()), vec.erase(unique(vec.begin(), vec.end()), vec.end()); return vec; } template <class T> int arglb(const std::vector<T> &v, const T &x) { return std::distance(v.begin(), std::lower_bound(v.begin(), v.end(), x)); } template <class T> int argub(const std::vector<T> &v, const T &x) { return std::distance(v.begin(), std::upper_bound(v.begin(), v.end(), x)); } template <class IStream, class T> IStream &operator>>(IStream &is, std::vector<T> &vec) { for (auto &v : vec) is >> v; return is; } template <class OStream, class T> OStream &operator<<(OStream &os, const std::vector<T> &vec); template <class OStream, class T, size_t sz> OStream &operator<<(OStream &os, const std::array<T, sz> &arr); template <class OStream, class T, class TH> OStream &operator<<(OStream &os, const std::unordered_set<T, TH> &vec); template <class OStream, class T, class U> OStream &operator<<(OStream &os, const pair<T, U> &pa); template <class OStream, class T> OStream &operator<<(OStream &os, const std::deque<T> &vec); template <class OStream, class T> OStream &operator<<(OStream &os, const std::set<T> &vec); template <class OStream, class T> OStream &operator<<(OStream &os, const std::multiset<T> &vec); template <class OStream, class T> OStream &operator<<(OStream &os, const std::unordered_multiset<T> &vec); template <class OStream, class T, class U> OStream &operator<<(OStream &os, const std::pair<T, U> &pa); template <class OStream, class TK, class TV> OStream &operator<<(OStream &os, const std::map<TK, TV> &mp); template <class OStream, class TK, class TV, class TH> OStream &operator<<(OStream &os, const std::unordered_map<TK, TV, TH> &mp); template <class OStream, class... T> OStream &operator<<(OStream &os, const std::tuple<T...> &tpl); template <class OStream, class T> OStream &operator<<(OStream &os, const std::vector<T> &vec) { os << '['; for (auto v : vec) os << v << ','; os << ']'; return os; } template <class OStream, class T, size_t sz> OStream &operator<<(OStream &os, const std::array<T, sz> &arr) { os << '['; for (auto v : arr) os << v << ','; os << ']'; return os; } template <class... T> std::istream &operator>>(std::istream &is, std::tuple<T...> &tpl) { std::apply([&is](auto &&... args) { ((is >> args), ...);}, tpl); return is; } template <class OStream, class... T> OStream &operator<<(OStream &os, const std::tuple<T...> &tpl) { os << '('; std::apply([&os](auto &&... args) { ((os << args << ','), ...);}, tpl); return os << ')'; } template <class OStream, class T, class TH> OStream &operator<<(OStream &os, const std::unordered_set<T, TH> &vec) { os << '{'; for (auto v : vec) os << v << ','; os << '}'; return os; } template <class OStream, class T> OStream &operator<<(OStream &os, const std::deque<T> &vec) { os << "deq["; for (auto v : vec) os << v << ','; os << ']'; return os; } template <class OStream, class T> OStream &operator<<(OStream &os, const std::set<T> &vec) { os << '{'; for (auto v : vec) os << v << ','; os << '}'; return os; } template <class OStream, class T> OStream &operator<<(OStream &os, const std::multiset<T> &vec) { os << '{'; for (auto v : vec) os << v << ','; os << '}'; return os; } template <class OStream, class T> OStream &operator<<(OStream &os, const std::unordered_multiset<T> &vec) { os << '{'; for (auto v : vec) os << v << ','; os << '}'; return os; } template <class OStream, class T, class U> OStream &operator<<(OStream &os, const std::pair<T, U> &pa) { return os << '(' << pa.first << ',' << pa.second << ')'; } template <class OStream, class TK, class TV> OStream &operator<<(OStream &os, const std::map<TK, TV> &mp) { os << '{'; for (auto v : mp) os << v.first << "=>" << v.second << ','; os << '}'; return os; } template <class OStream, class TK, class TV, class TH> OStream &operator<<(OStream &os, const std::unordered_map<TK, TV, TH> &mp) { os << '{'; for (auto v : mp) os << v.first << "=>" << v.second << ','; os << '}'; return os; } #ifdef HITONANODE_LOCAL const string COLOR_RESET = "\033[0m", BRIGHT_GREEN = "\033[1;32m", BRIGHT_RED = "\033[1;31m", BRIGHT_CYAN = "\033[1;36m", NORMAL_CROSSED = "\033[0;9;37m", RED_BACKGROUND = "\033[1;41m", NORMAL_FAINT = "\033[0;2m"; #define dbg(x) std::cerr << BRIGHT_CYAN << #x << COLOR_RESET << " = " << (x) << NORMAL_FAINT << " (L" << __LINE__ << ") " << __FILE__ << COLOR_RESET << std::endl #define dbgif(cond, x) ((cond) ? std::cerr << BRIGHT_CYAN << #x << COLOR_RESET << " = " << (x) << NORMAL_FAINT << " (L" << __LINE__ << ") " << __FILE__ << COLOR_RESET << std::endl : std::cerr) #else #define dbg(x) ((void)0) #define dbgif(cond, x) ((void)0) #endif template <typename T, int INVALID = -1> struct shortest_path { static constexpr T INF = T(1e18); int V, E; bool single_positive_weight; T wmin, wmax; std::vector<std::pair<int, T>> tos; std::vector<int> head; std::vector<std::tuple<int, int, T>> edges; void build_() { if (int(tos.size()) == E and int(head.size()) == V + 1) return; tos.resize(E); head.assign(V + 1, 0); for (const auto &e : edges) ++head[std::get<0>(e) + 1]; for (int i = 0; i < V; ++i) head[i + 1] += head[i]; auto cur = head; for (const auto &e : edges) { tos[cur[std::get<0>(e)]++] = std::make_pair(std::get<1>(e), std::get<2>(e)); } } shortest_path(int V = 0) : V(V), E(0), single_positive_weight(true), wmin(0), wmax(0) {} void add_edge(int s, int t, T w) { assert(0 <= s and s < V); assert(0 <= t and t < V); edges.emplace_back(s, t, w); ++E; if (w > 0 and wmax > 0 and wmax != w) single_positive_weight = false; wmin = std::min(wmin, w); wmax = std::max(wmax, w); } void add_bi_edge(int u, int v, T w) { add_edge(u, v, w); add_edge(v, u, w); } std::vector<T> dist; std::vector<int> prev; // Dijkstra algorithm // - Requirement: wmin >= 0 // - Complexity: O(E log E) using Pque = std::priority_queue<std::pair<T, int>, std::vector<std::pair<T, int>>, std::greater<std::pair<T, int>>>; template <class Heap = Pque> void dijkstra(int s, int t = INVALID) { assert(0 <= s and s < V); build_(); dist.assign(V, INF); prev.assign(V, INVALID); dist[s] = 0; Heap pq; pq.emplace(0, s); while (!pq.empty()) { T d; int v; std::tie(d, v) = pq.top(); pq.pop(); if (t == v) return; if (dist[v] < d) continue; for (int e = head[v]; e < head[v + 1]; ++e) { const auto &nx = tos[e]; T dnx = d + nx.second; if (dist[nx.first] > dnx) { dist[nx.first] = dnx, prev[nx.first] = v; pq.emplace(dnx, nx.first); } } } } // Dijkstra algorithm // - Requirement: wmin >= 0 // - Complexity: O(V^2 + E) void dijkstra_vquad(int s, int t = INVALID) { assert(0 <= s and s < V); build_(); dist.assign(V, INF); prev.assign(V, INVALID); dist[s] = 0; std::vector<char> fixed(V, false); while (true) { int r = INVALID; T dr = INF; for (int i = 0; i < V; i++) { if (!fixed[i] and dist[i] < dr) r = i, dr = dist[i]; } if (r == INVALID or r == t) break; fixed[r] = true; int nxt; T dx; for (int e = head[r]; e < head[r + 1]; ++e) { std::tie(nxt, dx) = tos[e]; if (dist[nxt] > dist[r] + dx) dist[nxt] = dist[r] + dx, prev[nxt] = r; } } } // Warshall-Floyd algorithm // - Requirement: no negative loop // - Complexity: O(E + V^3) std::vector<std::vector<T>> floyd_warshall() { build_(); std::vector<std::vector<T>> dist2d(V, std::vector<T>(V, INF)); for (int i = 0; i < V; i++) { dist2d[i][i] = 0; for (const auto &e : edges) { int s = std::get<0>(e), t = std::get<1>(e); dist2d[s][t] = std::min(dist2d[s][t], std::get<2>(e)); } } for (int k = 0; k < V; k++) { for (int i = 0; i < V; i++) { if (dist2d[i][k] == INF) continue; for (int j = 0; j < V; j++) { if (dist2d[k][j] == INF) continue; dist2d[i][j] = std::min(dist2d[i][j], dist2d[i][k] + dist2d[k][j]); } } } return dist2d; } }; #include <algorithm> #include <cassert> #include <cmath> #include <complex> #include <iostream> #include <tuple> #include <utility> #include <vector> template <typename T_P> struct Point2d { static T_P EPS; static void set_eps(T_P e) { EPS = e; } T_P x, y; Point2d() : x(0), y(0) {} Point2d(T_P x, T_P y) : x(x), y(y) {} Point2d(const std::pair<T_P, T_P> &p) : x(p.first), y(p.second) {} Point2d(const std::complex<T_P> &p) : x(p.real()), y(p.imag()) {} std::complex<T_P> to_complex() const noexcept { return {x, y}; } Point2d operator+(const Point2d &p) const noexcept { return Point2d(x + p.x, y + p.y); } Point2d operator-(const Point2d &p) const noexcept { return Point2d(x - p.x, y - p.y); } Point2d operator*(const Point2d &p) const noexcept { static_assert(std::is_floating_point<T_P>::value == true); return Point2d(x * p.x - y * p.y, x * p.y + y * p.x); } Point2d operator*(T_P d) const noexcept { return Point2d(x * d, y * d); } Point2d operator/(T_P d) const noexcept { static_assert(std::is_floating_point<T_P>::value == true); return Point2d(x / d, y / d); } Point2d inv() const { static_assert(std::is_floating_point<T_P>::value == true); return conj() / norm2(); } Point2d operator/(const Point2d &p) const { return (*this) * p.inv(); } bool operator<(const Point2d &r) const noexcept { return x != r.x ? x < r.x : y < r.y; } bool operator==(const Point2d &r) const noexcept { return x == r.x and y == r.y; } bool operator!=(const Point2d &r) const noexcept { return !((*this) == r); } T_P dot(Point2d p) const noexcept { return x * p.x + y * p.y; } T_P det(Point2d p) const noexcept { return x * p.y - y * p.x; } T_P absdet(Point2d p) const noexcept { return std::abs(det(p)); } T_P norm() const noexcept { static_assert(std::is_floating_point<T_P>::value == true); return std::sqrt(x * x + y * y); } T_P norm2() const noexcept { return x * x + y * y; } T_P arg() const noexcept { return std::atan2(y, x); } // rotate point/vector by rad Point2d rotate(T_P rad) const noexcept { static_assert(std::is_floating_point<T_P>::value == true); return Point2d(x * std::cos(rad) - y * std::sin(rad), x * std::sin(rad) + y * std::cos(rad)); } Point2d normalized() const { static_assert(std::is_floating_point<T_P>::value == true); return (*this) / this->norm(); } Point2d conj() const noexcept { return Point2d(x, -y); } template <class IStream> friend IStream &operator>>(IStream &is, Point2d &p) { T_P x, y; is >> x >> y; p = Point2d(x, y); return is; } template <class OStream> friend OStream &operator<<(OStream &os, const Point2d &p) { return os << '(' << p.x << ',' << p.y << ')'; } }; template <> double Point2d<double>::EPS = 1e-9; template <> long double Point2d<long double>::EPS = 1e-12; template <> long long Point2d<long long>::EPS = 0; // Whether two segments s1t1 & s2t2 intersect or not (endpoints not included) // Google Code Jam 2013 Round 3 - Rural Planning // Google Code Jam 2021 Round 3 - Fence Design template <typename T> bool intersect_open_segments(Point2d<T> s1, Point2d<T> t1, Point2d<T> s2, Point2d<T> t2) { if (s1 == t1 or s2 == t2) return false; // Not segment but point int nbad = 0; for (int t = 0; t < 2; t++) { Point2d<T> v1 = t1 - s1, v2 = t2 - s2; T den = v2.det(v1); if (den == 0) { if (s1.det(v1) == s2.det(v1)) { auto L1 = s1.dot(v1), R1 = t1.dot(v1); auto L2 = s2.dot(v1), R2 = t2.dot(v1); if (L1 > R1) std::swap(L1, R1); if (L2 > R2) std::swap(L2, R2); if (L1 > L2) std::swap(L1, L2), std::swap(R1, R2); return R1 > L2; } else { return false; } } else { auto num = v2.det(s2 - s1); if ((0 < num and num < den) or (den < num and num < 0)) nbad++; } std::swap(s1, s2); std::swap(t1, t2); } return nbad == 2; } using Pt = Point2d<long long>; int main() { int N, M; cin >> N >> M; vector<Pt> pts(N * 2); for (auto &v : pts) cin >> v; shortest_path<long long, -1> graph(N * 2); auto f = [&](int i, int d) { return i * 2 + d; }; vector<bitset<300>> is_bad(N * 2); REP(s, N * 2) FOR(t, s + 1, N * 2) REP(bar, N) { int u = f(bar, 0), v = f(bar, 1); if (s == u or s == v or t == u or t == v) continue; if (intersect_open_segments(pts.at(s), pts.at(t), pts.at(u), pts.at(v))) { is_bad.at(s).set(t); is_bad.at(t).set(s); is_bad.at(u).set(v); is_bad.at(v).set(u); } } REP(i, N * 2) REP(j, N * 2) if (!is_bad.at(i).test(j)) graph.add_bi_edge(i, j, sqrt((pts.at(i) - pts.at(j)).norm2()) * 1e6); auto dists = graph.floyd_warshall(); while (M--) { int i, d, j, e; cin >> i >> d >> j >> e; --i, --d, --j, --e; cout << dists.at(f(i, d)).at(f(j, e)) * 1e-6 << '\n'; } }