結果
問題 | No.2379 Burnside's Theorem |
ユーザー | sakikuroe |
提出日時 | 2023-07-14 21:27:23 |
言語 | Rust (1.83.0 + proconio) |
結果 |
WA
|
実行時間 | - |
コード長 | 6,648 bytes |
コンパイル時間 | 13,277 ms |
コンパイル使用メモリ | 401,428 KB |
実行使用メモリ | 6,948 KB |
最終ジャッジ日時 | 2024-09-16 06:15:28 |
合計ジャッジ時間 | 12,898 ms |
ジャッジサーバーID (参考情報) |
judge2 / judge1 |
(要ログイン)
テストケース
テストケース表示入力 | 結果 | 実行時間 実行使用メモリ |
---|---|---|
testcase_00 | AC | 1 ms
6,812 KB |
testcase_01 | WA | - |
testcase_02 | AC | 1 ms
6,944 KB |
testcase_03 | AC | 1 ms
6,944 KB |
testcase_04 | WA | - |
testcase_05 | AC | 1 ms
6,940 KB |
testcase_06 | AC | 1 ms
6,940 KB |
testcase_07 | AC | 1 ms
6,940 KB |
testcase_08 | AC | 2 ms
6,944 KB |
testcase_09 | AC | 1 ms
6,944 KB |
testcase_10 | AC | 2 ms
6,944 KB |
testcase_11 | AC | 1 ms
6,940 KB |
testcase_12 | AC | 2 ms
6,940 KB |
testcase_13 | WA | - |
testcase_14 | WA | - |
testcase_15 | WA | - |
testcase_16 | WA | - |
testcase_17 | AC | 1 ms
6,944 KB |
testcase_18 | AC | 1 ms
6,944 KB |
testcase_19 | AC | 1 ms
6,940 KB |
testcase_20 | AC | 1 ms
6,940 KB |
testcase_21 | AC | 1 ms
6,944 KB |
testcase_22 | WA | - |
testcase_23 | AC | 1 ms
6,940 KB |
ソースコード
#[macro_export] macro_rules! read_line { ($($xs: tt)*) => { let mut buf = String::new(); std::io::stdin().read_line(&mut buf).unwrap(); let mut iter = buf.split_whitespace(); expand!(iter, $($xs)*); }; } macro_rules! expand { ($iter: expr,) => {}; ($iter: expr, mut $var: ident : $type: tt, $($xs: tt)*) => { let mut $var = value!($iter, $type); expand!($iter, $($xs)*); }; ($iter: expr, $var: ident : $type: tt, $($xs: tt)*) => { let $var = value!($iter, $type); expand!($iter, $($xs)*); }; } macro_rules! value { ($iter:expr, ($($type: tt),*)) => { ($(value!($iter, $type)),*) }; ($iter: expr, [$type: tt; $len: expr]) => { (0..$len).map(|_| value!($iter, $type)).collect::<Vec<_>>() }; ($iter: expr, Chars) => { value!($iter, String).unwrap().chars().collect::<Vec<_>>() }; ($iter: expr, $type: ty) => { if let Some(v) = $iter.next() { v.parse::<$type>().ok() } else { None } }; } pub struct Montgomery { m: usize, pow_r: usize, mp: usize, mask: usize, r2: usize, } impl Montgomery { pub fn new(m: usize, pow_r: usize) -> Self { fn extended_gcd(a: i128, b: i128) -> (i128, i128) { if (a, b) == (1, 0) { (1, 0) } else { let (x, y) = extended_gcd(b, a % b); (y, x - (a / b) * y) } } let mp = { let (_, b) = extended_gcd(1i128 << pow_r, m as i128); if b <= 0 { (-b) as usize } else { (-b + (1 << pow_r)) as usize } }; let mask = std::usize::MAX; let r2 = (((1u128 << pow_r) % m as u128) * ((1u128 << pow_r) % m as u128) % m as u128) as usize; Montgomery { m, pow_r, mp, mask, r2, } } /// - Returns: /// - t * R^{-1} mod N fn mr(&self, t: u128) -> usize { let temp = { let mask = self.mask as u128; let mp = self.mp as u128; let m = self.m as u128; let pow_r = self.pow_r as u128; ((t + ((t & mask) * mp & mask) * m) >> pow_r) as usize }; if temp >= self.m { temp - self.m } else { temp } } /// - Returns: /// - a + b mod N pub fn add(&self, a: usize, b: usize) -> usize { (a + b) % self.m } /// - Returns: /// - a * b mod N pub fn mul(&self, a: usize, b: usize) -> usize { self.mr(self.mr(a as u128 * b as u128) as u128 * self.r2 as u128) } } /// - Returns: /// - GCD(a, b) pub fn gcd(mut a: usize, mut b: usize) -> usize { if a < b { std::mem::swap(&mut a, &mut b); } while b != 0 { let temp = a % b; a = b; b = temp; } a } /// - Returns: /// - if n is prime number: /// * true /// - else: /// * false /// /// - Note: /// - Algorithm: /// - Miller-Rabin pub fn is_prime_large(n: usize) -> bool { if n == 0 || n == 1 || (n > 2 && n % 2 == 0) { return false; } if n == 2 { return true; } /// - Returns: /// - $a^{n}$ modulo $m$ pub fn mod_pow(a: usize, mut n: usize, mont: &Montgomery) -> usize { let mut res = 1; let mut x = a; while n > 0 { if n % 2 == 1 { res = mont.mul(res, x); } x = mont.mul(x, x); n /= 2; } res } let s = (n - 1).trailing_zeros(); let d = (n - 1) / (1 << s); let mont = Montgomery::new(n, 64); let f = |mut a| { a %= n; if a == 0 { return true; } let mut ad = mod_pow(a, d, &mont); if ad == 1 || ad == n - 1 { return true; } for _ in 0..s { ad = mont.mul(ad, ad); if ad == n - 1 { return true; } } false }; const A: [usize; 7] = [2, 325, 9375, 28178, 450775, 9780504, 1795265022]; A.into_iter().all(|x| f(x)) } pub fn factorize_sub(n: usize, res: &mut Vec<usize>) { if n == 1 { return; } if is_prime_large(n) { res.push(n); return; } let n2 = (n as f64).powf(1.0 / 8.0) as usize; // find divisor of n let d = if n % 2 == 0 { 2 } else { (|| { let mont = Montgomery::new(n, 64); for c in 1234567891.. { let f = |a, mont: &Montgomery| mont.add(mont.mul(a, a), c); let mut a = vec![2, f(2, &mont)]; let mut i1 = 0; let mut i2 = 1; loop { let mut q = 1; for _ in 0..n2 { a.push(f(a[i2], &mont)); a.push(f(a[i2 + 1], &mont)); i1 += 1; i2 += 2; q = mont.mul(q, std::cmp::max(a[i1], a[i2]) - std::cmp::min(a[i1], a[i2])); } let g = gcd(q, n); if 1 < g && g < n { return g; } if g == n { break; } a.push(f(a[i2], &mont)); a.push(f(a[i2 + 1], &mont)); i1 += 1; i2 += 2; } let mut a = vec![2, f(2, &mont)]; let mut i1 = 0; let mut i2 = 1; loop { let g = gcd(std::cmp::max(a[i1], a[i2]) - std::cmp::min(a[i1], a[i2]), n); if 1 < g && g < n { return g; } if g == n { break; } a.push(f(a[i2], &mont)); a.push(f(a[i2 + 1], &mont)); i1 += 1; i2 += 2; } } unreachable!() })() }; factorize_sub(d, res); factorize_sub(n / d, res); } /// - Returns: /// - result of integer factorization of n /// - Note: /// - Algorithm: /// - Pollard's rho algorithm pub fn factorize(n: usize) -> Vec<usize> { assert!(n != 0); let mut res = vec![]; factorize_sub(n, &mut res); res.sort(); res } fn main() { read_line!(n: usize,); let n = n.unwrap(); let mut qe = factorize(n); qe.sort(); qe.dedup(); println!("{}", if qe.len() == 2 { "Yes" } else { "No" }); }