結果
問題 | No.2379 Burnside's Theorem |
ユーザー | gyouzasushi |
提出日時 | 2023-07-14 21:38:11 |
言語 | C++17 (gcc 12.3.0 + boost 1.83.0) |
結果 |
AC
|
実行時間 | 2 ms / 2,000 ms |
コード長 | 3,817 bytes |
コンパイル時間 | 2,358 ms |
コンパイル使用メモリ | 215,724 KB |
実行使用メモリ | 5,376 KB |
最終ジャッジ日時 | 2024-09-16 06:30:32 |
合計ジャッジ時間 | 3,179 ms |
ジャッジサーバーID (参考情報) |
judge6 / judge3 |
(要ログイン)
テストケース
テストケース表示入力 | 結果 | 実行時間 実行使用メモリ |
---|---|---|
testcase_00 | AC | 2 ms
5,248 KB |
testcase_01 | AC | 2 ms
5,376 KB |
testcase_02 | AC | 2 ms
5,376 KB |
testcase_03 | AC | 2 ms
5,376 KB |
testcase_04 | AC | 2 ms
5,376 KB |
testcase_05 | AC | 2 ms
5,376 KB |
testcase_06 | AC | 2 ms
5,376 KB |
testcase_07 | AC | 2 ms
5,376 KB |
testcase_08 | AC | 2 ms
5,376 KB |
testcase_09 | AC | 2 ms
5,376 KB |
testcase_10 | AC | 2 ms
5,376 KB |
testcase_11 | AC | 2 ms
5,376 KB |
testcase_12 | AC | 2 ms
5,376 KB |
testcase_13 | AC | 2 ms
5,376 KB |
testcase_14 | AC | 2 ms
5,376 KB |
testcase_15 | AC | 2 ms
5,376 KB |
testcase_16 | AC | 2 ms
5,376 KB |
testcase_17 | AC | 2 ms
5,376 KB |
testcase_18 | AC | 2 ms
5,376 KB |
testcase_19 | AC | 2 ms
5,376 KB |
testcase_20 | AC | 2 ms
5,376 KB |
testcase_21 | AC | 2 ms
5,376 KB |
testcase_22 | AC | 2 ms
5,376 KB |
testcase_23 | AC | 2 ms
5,376 KB |
ソースコード
#line 1 "main.cpp" #include <bits/stdc++.h> #define rep(i, n) for (int i = 0; i < (int)(n); i++) #define rrep(i, n) for (int i = (int)(n - 1); i >= 0; i--) #define all(x) (x).begin(), (x).end() #define sz(x) int(x.size()) using namespace std; using ll = long long; constexpr int INF = 1e9; constexpr ll LINF = 1e18; string YesNo(bool cond) { return cond ? "Yes" : "No"; } string YESNO(bool cond) { return cond ? "YES" : "NO"; } template <class T> bool chmax(T& a, const T& b) { if (a < b) { a = b; return true; } return false; } template <class T> bool chmin(T& a, const T& b) { if (b < a) { a = b; return true; } return false; } template <typename T, class F> T bisect(T ok, T ng, const F& f) { while (abs(ok - ng) > 1) { T mid = min(ok, ng) + (abs(ok - ng) >> 1); (f(mid) ? ok : ng) = mid; } return ok; } template <typename T, class F> T bisect_double(T ok, T ng, const F& f, int iter = 100) { while (iter--) { T mid = (ok + ng) / 2; (f(mid) ? ok : ng) = mid; } return ok; } template <class T> vector<T> make_vec(size_t a) { return vector<T>(a); } template <class T, class... Ts> auto make_vec(size_t a, Ts... ts) { return vector<decltype(make_vec<T>(ts...))>(a, make_vec<T>(ts...)); } template <typename T> istream& operator>>(istream& is, vector<T>& v) { for (int i = 0; i < int(v.size()); i++) { is >> v[i]; } return is; } template <typename T> ostream& operator<<(ostream& os, const vector<T>& v) { for (int i = 0; i < int(v.size()); i++) { os << v[i]; if (i < sz(v) - 1) os << ' '; } return os; } #line 4 "/Users/gyouzasushi/kyopro/library/math/factorize.hpp" long long modmul(long long x, long long y, long long mod) { using i128 = __int128_t; return (long long)(i128(x) * i128(y) % i128(mod)); } long long modpow(long long a, long long n, long long mod) { long long ret = 1; while (n > 0) { if (n & 1) ret = modmul(ret, a, mod); a = modmul(a, a, mod); n >>= 1; } return ret; } long long rho(long long n) { long long z = 0; auto f = [&](long long x) -> long long { long long ret = modmul(x, x, n) + z; if (ret == n) return 0; return ret; }; while (true) { long long x = ++z; long long y = f(x); while (true) { long long d = std::gcd(std::abs(x - y), n); if (d == n) break; if (d > 1) return d; x = f(x); y = f(f(y)); } } } #include <initializer_list> bool miller_rabin(long long n) { if (n == 1) return 0; long long d = n - 1, s = 0; while (~d & 1) d >>= 1, s++; auto check = [&](long long a) -> bool { long long x = modpow(a, d, n); if (x == 1) return 1; long long y = n - 1; for (int i = 0; i < s; i++) { if (x == y) return true; x = modmul(x, x, n); } return false; }; for (long long a : {2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37}) { if (a >= n) break; if (!check(a)) return false; } return true; } #line 59 "/Users/gyouzasushi/kyopro/library/math/factorize.hpp" std::map<long long, int> factorize(long long n) { std::map<long long, int> ret; while (~n & 1) n >>= 1, ret[2]++; std::queue<long long> q; q.push(n); while (!q.empty()) { long long p = q.front(); q.pop(); if (p == 1) continue; if (miller_rabin(p)) { ret[p]++; continue; } long long d = rho(p); q.push(d); q.push(p / d); } return ret; } #line 72 "main.cpp" int main() { ll n; cin >> n; cout << YesNo(sz(factorize(n)) <= 2) << '\n'; }