結果
問題 | No.2348 Power!! (Easy) |
ユーザー | tokusakurai |
提出日時 | 2023-07-16 00:20:43 |
言語 | C++17 (gcc 13.3.0 + boost 1.87.0) |
結果 |
AC
|
実行時間 | 1,602 ms / 5,000 ms |
コード長 | 7,440 bytes |
コンパイル時間 | 2,604 ms |
コンパイル使用メモリ | 211,720 KB |
実行使用メモリ | 5,376 KB |
最終ジャッジ日時 | 2024-09-17 08:48:00 |
合計ジャッジ時間 | 12,955 ms |
ジャッジサーバーID (参考情報) |
judge5 / judge2 |
(要ログイン)
テストケース
テストケース表示入力 | 結果 | 実行時間 実行使用メモリ |
---|---|---|
testcase_00 | AC | 24 ms
5,248 KB |
testcase_01 | AC | 101 ms
5,376 KB |
testcase_02 | AC | 144 ms
5,376 KB |
testcase_03 | AC | 97 ms
5,376 KB |
testcase_04 | AC | 2 ms
5,376 KB |
testcase_05 | AC | 1,073 ms
5,376 KB |
testcase_06 | AC | 1,070 ms
5,376 KB |
testcase_07 | AC | 1,068 ms
5,376 KB |
testcase_08 | AC | 1,067 ms
5,376 KB |
testcase_09 | AC | 1,458 ms
5,376 KB |
testcase_10 | AC | 1,602 ms
5,376 KB |
testcase_11 | AC | 1,069 ms
5,376 KB |
testcase_12 | AC | 1,073 ms
5,376 KB |
ソースコード
#include <bits/stdc++.h> using namespace std; struct io_setup { io_setup() { ios_base::sync_with_stdio(false); cin.tie(NULL); cout << fixed << setprecision(15); } } io_setup; template <typename T> void print(const vector<T> &v, T x = 0) { int n = v.size(); for (int i = 0; i < n; i++) cout << v[i] + x << (i == n - 1 ? '\n' : ' '); if (v.empty()) cout << '\n'; } constexpr int MOD = 998244353; template <int mod> struct Mod_Int { int x; Mod_Int() : x(0) {} Mod_Int(long long y) : x(y >= 0 ? y % mod : (mod - (-y) % mod) % mod) {} static int get_mod() { return mod; } Mod_Int &operator+=(const Mod_Int &p) { if ((x += p.x) >= mod) x -= mod; return *this; } Mod_Int &operator-=(const Mod_Int &p) { if ((x += mod - p.x) >= mod) x -= mod; return *this; } Mod_Int &operator*=(const Mod_Int &p) { x = (int)(1LL * x * p.x % mod); return *this; } Mod_Int &operator/=(const Mod_Int &p) { *this *= p.inverse(); return *this; } Mod_Int &operator++() { return *this += Mod_Int(1); } Mod_Int operator++(int) { Mod_Int tmp = *this; ++*this; return tmp; } Mod_Int &operator--() { return *this -= Mod_Int(1); } Mod_Int operator--(int) { Mod_Int tmp = *this; --*this; return tmp; } Mod_Int operator-() const { return Mod_Int(-x); } Mod_Int operator+(const Mod_Int &p) const { return Mod_Int(*this) += p; } Mod_Int operator-(const Mod_Int &p) const { return Mod_Int(*this) -= p; } Mod_Int operator*(const Mod_Int &p) const { return Mod_Int(*this) *= p; } Mod_Int operator/(const Mod_Int &p) const { return Mod_Int(*this) /= p; } bool operator==(const Mod_Int &p) const { return x == p.x; } bool operator!=(const Mod_Int &p) const { return x != p.x; } Mod_Int inverse() const { assert(*this != Mod_Int(0)); return pow(mod - 2); } Mod_Int pow(long long k) const { Mod_Int now = *this, ret = 1; for (; k > 0; k >>= 1, now *= now) { if (k & 1) ret *= now; } return ret; } friend ostream &operator<<(ostream &os, const Mod_Int &p) { return os << p.x; } friend istream &operator>>(istream &is, Mod_Int &p) { long long a; is >> a; p = Mod_Int<mod>(a); return is; } }; using mint = Mod_Int<MOD>; template <typename T> struct Number_Theoretic_Transform { static int max_base; static T root; static vector<T> r, ir; Number_Theoretic_Transform() {} static void init() { if (!r.empty()) return; int mod = T::get_mod(); int tmp = mod - 1; root = 2; while (root.pow(tmp >> 1) == 1) root++; max_base = 0; while (tmp % 2 == 0) tmp >>= 1, max_base++; r.resize(max_base), ir.resize(max_base); for (int i = 0; i < max_base; i++) { r[i] = -root.pow((mod - 1) >> (i + 2)); // r[i] := 1 の 2^(i+2) 乗根 ir[i] = r[i].inverse(); // ir[i] := 1/r[i] } } static void ntt(vector<T> &a) { init(); int n = a.size(); assert((n & (n - 1)) == 0); assert(n <= (1 << max_base)); for (int k = n; k >>= 1;) { T w = 1; for (int s = 0, t = 0; s < n; s += 2 * k) { for (int i = s, j = s + k; i < s + k; i++, j++) { T x = a[i], y = w * a[j]; a[i] = x + y, a[j] = x - y; } w *= r[__builtin_ctz(++t)]; } } } static void intt(vector<T> &a) { init(); int n = a.size(); assert((n & (n - 1)) == 0); assert(n <= (1 << max_base)); for (int k = 1; k < n; k <<= 1) { T w = 1; for (int s = 0, t = 0; s < n; s += 2 * k) { for (int i = s, j = s + k; i < s + k; i++, j++) { T x = a[i], y = a[j]; a[i] = x + y, a[j] = w * (x - y); } w *= ir[__builtin_ctz(++t)]; } } T inv = T(n).inverse(); for (auto &e : a) e *= inv; } static vector<T> convolve(vector<T> a, vector<T> b) { if (a.empty() || b.empty()) return {}; if (min(a.size(), b.size()) < 40) { int n = a.size(), m = b.size(); vector<T> c(n + m - 1, 0); for (int i = 0; i < n; i++) { for (int j = 0; j < m; j++) c[i + j] += a[i] * b[j]; } return c; } int k = (int)a.size() + (int)b.size() - 1, n = 1; while (n < k) n <<= 1; a.resize(n, 0), b.resize(n, 0); ntt(a), ntt(b); for (int i = 0; i < n; i++) a[i] *= b[i]; intt(a), a.resize(k); return a; } }; template <typename T> int Number_Theoretic_Transform<T>::max_base = 0; template <typename T> T Number_Theoretic_Transform<T>::root = T(); template <typename T> vector<T> Number_Theoretic_Transform<T>::r = vector<T>(); template <typename T> vector<T> Number_Theoretic_Transform<T>::ir = vector<T>(); using NTT = Number_Theoretic_Transform<mint>; template <typename T> vector<T> multipoint_evaluation_geometric_series(vector<T> f, T a, T r, int m) { if (m == 0) return {}; int n = f.size(); T c = 1; for (int i = 0; i < n; i++) { f[i] *= c; c *= a; } if (r == T(0)) { vector<mint> ret(m, 0); for (int i = 0; i < n; i++) ret[0] += f[i]; for (int j = 1; j < m; j++) ret[j] = f[0]; return ret; } int s = 1; while (s < n + m - 1) s <<= 1; T ir = r.inverse(); vector<T> pw(n + m - 1, 1); for (int i = 1; i < n + m - 1; i++) pw[i] = pw[i - 1] * r; for (int i = 1; i < n + m - 1; i++) pw[i] *= pw[i - 1]; vector<T> ipw(max(n, m), 1); for (int i = 1; i < max(n, m); i++) ipw[i] = ipw[i - 1] * ir; for (int i = 1; i < max(n, m); i++) ipw[i] *= ipw[i - 1]; vector<T> g1(s, 0), g2(s, 0); for (int i = 0; i < n; i++) g1[n - 1 - i] = f[i] * ipw[i]; for (int k = 0; k < n + m - 1; k++) g2[k] = pw[k]; NTT::ntt(g1), NTT::ntt(g2); for (int i = 0; i < s; i++) g1[i] *= g2[i]; NTT::intt(g1); vector<T> ret(m, 0); for (int j = 0; j < m; j++) ret[j] = g1[n - 1 + j] * ipw[j]; return ret; } template <typename T> T kth_root_integer(T a, int k) { if (k == 1) return a; auto check = [&](T x) { T mul = 1; for (int j = 0; j < k; j++) { if (__builtin_mul_overflow(mul, x, &mul)) return false; } return mul <= a; }; int n = 4 * sizeof(T); T ret = 0; for (int i = n - 1; i >= 0; i--) { if (check(ret | (T(1) << i))) ret |= T(1) << i; } return ret; } int main() { int T; cin >> T; while (T--) { mint A; int N; cin >> A >> N; int D = kth_root_integer(N, 2); vector<mint> f(D, 0); for (int i = 0; i < D; i++) f[i] = A.pow(i * i); mint r = A.pow(2 * D); auto g = multipoint_evaluation_geometric_series(f, mint(1), r, D); mint ans = 0; for (int k = 0; k < D; k++) ans += A.pow(1LL * D * D * k * k) * g[k]; for (int i = D * D; i < N; i++) ans += A.pow(1LL * i * i); cout << ans << '\n'; } }