結果
| 問題 |
No.2348 Power!! (Easy)
|
| コンテスト | |
| ユーザー |
|
| 提出日時 | 2023-07-16 00:20:43 |
| 言語 | C++17 (gcc 13.3.0 + boost 1.87.0) |
| 結果 |
AC
|
| 実行時間 | 1,648 ms / 5,000 ms |
| コード長 | 7,440 bytes |
| コンパイル時間 | 2,381 ms |
| コンパイル使用メモリ | 206,312 KB |
| 最終ジャッジ日時 | 2025-02-15 15:10:38 |
|
ジャッジサーバーID (参考情報) |
judge1 / judge2 |
(要ログイン)
| ファイルパターン | 結果 |
|---|---|
| sample | AC * 1 |
| other | AC * 12 |
ソースコード
#include <bits/stdc++.h>
using namespace std;
struct io_setup {
io_setup() {
ios_base::sync_with_stdio(false);
cin.tie(NULL);
cout << fixed << setprecision(15);
}
} io_setup;
template <typename T>
void print(const vector<T> &v, T x = 0) {
int n = v.size();
for (int i = 0; i < n; i++) cout << v[i] + x << (i == n - 1 ? '\n' : ' ');
if (v.empty()) cout << '\n';
}
constexpr int MOD = 998244353;
template <int mod>
struct Mod_Int {
int x;
Mod_Int() : x(0) {}
Mod_Int(long long y) : x(y >= 0 ? y % mod : (mod - (-y) % mod) % mod) {}
static int get_mod() { return mod; }
Mod_Int &operator+=(const Mod_Int &p) {
if ((x += p.x) >= mod) x -= mod;
return *this;
}
Mod_Int &operator-=(const Mod_Int &p) {
if ((x += mod - p.x) >= mod) x -= mod;
return *this;
}
Mod_Int &operator*=(const Mod_Int &p) {
x = (int)(1LL * x * p.x % mod);
return *this;
}
Mod_Int &operator/=(const Mod_Int &p) {
*this *= p.inverse();
return *this;
}
Mod_Int &operator++() { return *this += Mod_Int(1); }
Mod_Int operator++(int) {
Mod_Int tmp = *this;
++*this;
return tmp;
}
Mod_Int &operator--() { return *this -= Mod_Int(1); }
Mod_Int operator--(int) {
Mod_Int tmp = *this;
--*this;
return tmp;
}
Mod_Int operator-() const { return Mod_Int(-x); }
Mod_Int operator+(const Mod_Int &p) const { return Mod_Int(*this) += p; }
Mod_Int operator-(const Mod_Int &p) const { return Mod_Int(*this) -= p; }
Mod_Int operator*(const Mod_Int &p) const { return Mod_Int(*this) *= p; }
Mod_Int operator/(const Mod_Int &p) const { return Mod_Int(*this) /= p; }
bool operator==(const Mod_Int &p) const { return x == p.x; }
bool operator!=(const Mod_Int &p) const { return x != p.x; }
Mod_Int inverse() const {
assert(*this != Mod_Int(0));
return pow(mod - 2);
}
Mod_Int pow(long long k) const {
Mod_Int now = *this, ret = 1;
for (; k > 0; k >>= 1, now *= now) {
if (k & 1) ret *= now;
}
return ret;
}
friend ostream &operator<<(ostream &os, const Mod_Int &p) { return os << p.x; }
friend istream &operator>>(istream &is, Mod_Int &p) {
long long a;
is >> a;
p = Mod_Int<mod>(a);
return is;
}
};
using mint = Mod_Int<MOD>;
template <typename T>
struct Number_Theoretic_Transform {
static int max_base;
static T root;
static vector<T> r, ir;
Number_Theoretic_Transform() {}
static void init() {
if (!r.empty()) return;
int mod = T::get_mod();
int tmp = mod - 1;
root = 2;
while (root.pow(tmp >> 1) == 1) root++;
max_base = 0;
while (tmp % 2 == 0) tmp >>= 1, max_base++;
r.resize(max_base), ir.resize(max_base);
for (int i = 0; i < max_base; i++) {
r[i] = -root.pow((mod - 1) >> (i + 2)); // r[i] := 1 の 2^(i+2) 乗根
ir[i] = r[i].inverse(); // ir[i] := 1/r[i]
}
}
static void ntt(vector<T> &a) {
init();
int n = a.size();
assert((n & (n - 1)) == 0);
assert(n <= (1 << max_base));
for (int k = n; k >>= 1;) {
T w = 1;
for (int s = 0, t = 0; s < n; s += 2 * k) {
for (int i = s, j = s + k; i < s + k; i++, j++) {
T x = a[i], y = w * a[j];
a[i] = x + y, a[j] = x - y;
}
w *= r[__builtin_ctz(++t)];
}
}
}
static void intt(vector<T> &a) {
init();
int n = a.size();
assert((n & (n - 1)) == 0);
assert(n <= (1 << max_base));
for (int k = 1; k < n; k <<= 1) {
T w = 1;
for (int s = 0, t = 0; s < n; s += 2 * k) {
for (int i = s, j = s + k; i < s + k; i++, j++) {
T x = a[i], y = a[j];
a[i] = x + y, a[j] = w * (x - y);
}
w *= ir[__builtin_ctz(++t)];
}
}
T inv = T(n).inverse();
for (auto &e : a) e *= inv;
}
static vector<T> convolve(vector<T> a, vector<T> b) {
if (a.empty() || b.empty()) return {};
if (min(a.size(), b.size()) < 40) {
int n = a.size(), m = b.size();
vector<T> c(n + m - 1, 0);
for (int i = 0; i < n; i++) {
for (int j = 0; j < m; j++) c[i + j] += a[i] * b[j];
}
return c;
}
int k = (int)a.size() + (int)b.size() - 1, n = 1;
while (n < k) n <<= 1;
a.resize(n, 0), b.resize(n, 0);
ntt(a), ntt(b);
for (int i = 0; i < n; i++) a[i] *= b[i];
intt(a), a.resize(k);
return a;
}
};
template <typename T>
int Number_Theoretic_Transform<T>::max_base = 0;
template <typename T>
T Number_Theoretic_Transform<T>::root = T();
template <typename T>
vector<T> Number_Theoretic_Transform<T>::r = vector<T>();
template <typename T>
vector<T> Number_Theoretic_Transform<T>::ir = vector<T>();
using NTT = Number_Theoretic_Transform<mint>;
template <typename T>
vector<T> multipoint_evaluation_geometric_series(vector<T> f, T a, T r, int m) {
if (m == 0) return {};
int n = f.size();
T c = 1;
for (int i = 0; i < n; i++) {
f[i] *= c;
c *= a;
}
if (r == T(0)) {
vector<mint> ret(m, 0);
for (int i = 0; i < n; i++) ret[0] += f[i];
for (int j = 1; j < m; j++) ret[j] = f[0];
return ret;
}
int s = 1;
while (s < n + m - 1) s <<= 1;
T ir = r.inverse();
vector<T> pw(n + m - 1, 1);
for (int i = 1; i < n + m - 1; i++) pw[i] = pw[i - 1] * r;
for (int i = 1; i < n + m - 1; i++) pw[i] *= pw[i - 1];
vector<T> ipw(max(n, m), 1);
for (int i = 1; i < max(n, m); i++) ipw[i] = ipw[i - 1] * ir;
for (int i = 1; i < max(n, m); i++) ipw[i] *= ipw[i - 1];
vector<T> g1(s, 0), g2(s, 0);
for (int i = 0; i < n; i++) g1[n - 1 - i] = f[i] * ipw[i];
for (int k = 0; k < n + m - 1; k++) g2[k] = pw[k];
NTT::ntt(g1), NTT::ntt(g2);
for (int i = 0; i < s; i++) g1[i] *= g2[i];
NTT::intt(g1);
vector<T> ret(m, 0);
for (int j = 0; j < m; j++) ret[j] = g1[n - 1 + j] * ipw[j];
return ret;
}
template <typename T>
T kth_root_integer(T a, int k) {
if (k == 1) return a;
auto check = [&](T x) {
T mul = 1;
for (int j = 0; j < k; j++) {
if (__builtin_mul_overflow(mul, x, &mul)) return false;
}
return mul <= a;
};
int n = 4 * sizeof(T);
T ret = 0;
for (int i = n - 1; i >= 0; i--) {
if (check(ret | (T(1) << i))) ret |= T(1) << i;
}
return ret;
}
int main() {
int T;
cin >> T;
while (T--) {
mint A;
int N;
cin >> A >> N;
int D = kth_root_integer(N, 2);
vector<mint> f(D, 0);
for (int i = 0; i < D; i++) f[i] = A.pow(i * i);
mint r = A.pow(2 * D);
auto g = multipoint_evaluation_geometric_series(f, mint(1), r, D);
mint ans = 0;
for (int k = 0; k < D; k++) ans += A.pow(1LL * D * D * k * k) * g[k];
for (int i = D * D; i < N; i++) ans += A.pow(1LL * i * i);
cout << ans << '\n';
}
}